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PointersPointers

 Local variables created as a program runs are 
stored in a region of memory called the heap
● Static variables & formal parameters are stored 

in the stack frame (size known at compile time)
 A pointer is a variable whose value refers to a 

memory location in the heap
➔ int myAge = 20;
➔ int* myAgePtr;
➔ myAgePtr = &myAge; // get address of myAge
➔ cout << *myAgePtr; // dereference the pointer

● Pointer arithmetic can be dangerous
➔ *(myAgePtr+1); // segfault!
➔ *(103883); // ref random spot in mem

20202020
myAgemyAge

0xff0...0xff0...0xff0...0xff0...

myAgePtrmyAgePtr
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Pointer-less languagesPointer-less languages

 To prevent segfaults, most languages (besides 
C/C++) do not have explicit pointers

 Instead, you can create references (“aliases”):
➔ ages = [ 3, 5, 7, 9] # Python list (mutable obj)
➔ myAges = ages # create an alias
➔ myAges[2] = 11 # overwrites “7”
➔ ages # [ 3, 5, 11, 9 ]

 Variables are entries
in a namespace,
mapping to locations
in the heap

 Be aware of when a reference is made vs a copy!

<list><list>
3, 5, 7, 93, 5, 7, 9
<list><list>

3, 5, 7, 93, 5, 7, 9

Namespace:
__main__

ages 0xff0...

myAges 0xff0...

Namespace:
__main__

ages 0xff0...

myAges 0xff0... HeapHeap
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Linked listsLinked lists

 Linear, array-like data structure, but
● Dynamic (can change length)

 Length does not need to be known at compile time)

● Mid-list insertion/deletion is fast
 Don't need to shift by copying

● But random access is slower than array
 Need to walk down list from head

33 55 77 9 /9 /

headhead
keykey nextnext

class Node:
def __init__(self, key=None, next=None):

self.key = key
self.next = next

head = Node(9)
head = Node(7, head)
head = Node(5, head)
head = Node(3, head)

class Node:
def __init__(self, key=None, next=None):

self.key = key
self.next = next

head = Node(9)
head = Node(7, head)
head = Node(5, head)
head = Node(3, head)
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Linked list variantsLinked list variants

 The basic list is a singly-linked list
 Doubly-linked lists have both .prev and .next 

pointers in each node:
➔ class Node:

● def __init__(self, key=None, prev=None, next=None):
● (self.key, self.prev, self.next) = (key, prev, next)

● Also good to have both head and tail pointers
 Better to have separate datatype for the overall list:

➔ class LinkedList:
● def __init__(self, head=None, tail=None):

● (self.head, self.tail) = (head, tail)
➔ x = LinkedList(Node(3), Node(5))
➔ x.head.next = x.tail
➔ x.tail.prev = x.head

33

headhead

55

tailtail

prevprev

keykey

nextnext
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Circularly-linked listsCircularly-linked lists

 In a circular singly-linked list, the next pointer of 
the last node points back to the first node:

● When traversing the list, make sure we don't 
just keep circling endlessly!

 e.g., store length of list, and track how many nodes 
we've traversed

 or: add a sentinel node with a special key

 In a circular doubly-linked list, both next and prev 
links wrap around

33 55 77 99

headhead
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Operations on linked listsOperations on linked lists

 Insert(key): create a new node with given key,
and insert it at the head of the list

➔ def insert(self, key=None):
● self = Node(key, self)

 Search(key): return a reference to node with given 
key, or return None if it doesn't exist

➔ def search(self, key):
● cur = self
● while cur != None:

● if cur.key == key:
● return cur

● cur = cur.next
● return None

33 55 77 9 /9 /

headhead
curcur
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Splicing nodesSplicing nodes

 Delete(node): splice given node out of list
● Can be given a reference directly to the node

 Or given a key (for which we first search)

● Update prev/next links in neighbouring nodes to 
skip over the deleted node

➔ node.prev.next = node.next
➔ node.next.prev = node.prev

● Free the unused memory so it can be reused
➔ del node

 Otherwise it becomes garbage: allocated memory in 
the heap that is unused and unreachable

 Source of memory leaks: heap grows and grows as 
program runs

33 55 77
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Stacks and queuesStacks and queues

 Stack: LIFO: last-in-first-out
● like papers on a memo spike

 Queue: FIFO: first-in-first-out
● like a pipeline, or a queue at the bank

 Interface:
● length(), isempty(): # items
● push(x): add x to stack/queue
● peek(): get item without deleting
● pop(): peek and remove item

 Underflow: peek/pop on an empty stack/queue
 Overflow: push on a full stack/queue

©Dennis Galante/evolveimages.com©Dennis Galante/evolveimages.com
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http://www.evolveimages.com/media/3df27836-fb51-11e1-a872-00259030440e-office-message-spike-with-stacked-paper-messages
http://leadenergy.org/2011/02/an-analysis-of-keystone-xl-of-politics-profits-and-pipelines/
http://leadenergy.org/2011/02/an-analysis-of-keystone-xl-of-politics-profits-and-pipelines/
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Implementing stacks/queuesImplementing stacks/queues

 Stacks/queues are abstract data types (ADTs):
● Defined in terms of their operations / interface
● Various implementations have different 

memory usage, computational complexity, etc.
 Can use either arrays or linked-lists to implement

● e.g., stack with a singly-linked list:
➔ class Stack:

● def __init__(self):
● self.head = None

● def push(self, key): # overflow not a concern
● self.head = Node(key, self.head)

● def pop(self): # watch for underflow!
● item = self.head
● self.head = self.head.next
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TreesTrees

 For binary trees, use 3 pointers:
● Parent, left child, right child

➔ class TreeNode:
● def __init__(self, par=None, left=None, right=None):

● (self.par, self.left, self.right) = (par, left, right)
➔ class Tree:

● def __init__(self, root=None):
● self.root = root

 For d-way trees, with unknown degree d:
● Pointers: parent,

first child, next sibling
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Search treesSearch trees

 Trees for fast searching
 Operations: insert, delete, search

● Θ(height of tree): for full tree, Θ(lg n)
● Can implement a dictionary or priority queue

 Kinds of trees include binary search trees (ch12), 
red-black trees (ch13), B-trees (ch18)

 Binary search tree (BST): a binary tree with
● BST property: at any node x,

 Every node y in left sub-tree has y ≤ x
 Every node y in right sub-tree has y ≥ x

55
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22 44

55
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Tree traversalsTree traversals

 Traversals/walks print out all nodes
 Preorder: print self before either child

➔ preorder(node):
● print node.key
● preorder( node.left )
● preorder( node.right )

● Output: 5, 3, 2, 4, 5, 8
 Postorder: print both children first before self

● Output? Pseudocode?
 Inorder: print left child, then self, then right child

● Output? Pseudocode?
 Which is useful on a tree with the BST property?

55

33 88

22 44
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Expression treesExpression trees

 Trees are also used to
parse & evaluate expressions:

 e.g., ( 2 * (-4) ) + 9

● Which traversal produces this expression?
● What tree would represent 2 * (-4 + 9)?

 Reverse Polish Notation (RPN):
 e.g.: 2, 4, -, *, 9, +

● Which traversal produces RPN?
● Make an RPN calculator using a stack:
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Searching a BSTSearching a BST

 Comparison with node's key tells us
which subtree to recurse down:

➔ search(node, key):
● if node is NULL or node.key == key:

● return node
● if key < node.key:

● return search( node.left, key )
● else:

● return search( node.right, key )
 e.g., search(root, 4)

 Complexity is O(height of tree)
● If tree is full, this is Θ(lg n)
● But in worst-case: linked-list is also a tree!
● ⇒ want to keep tree balanced

55
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Min/max of BSTMin/max of BST

 Find the smallest/largest keys in a BST:
 Smallest:

● Keep taking left child as far as we can
➔ min(node):

● while node.left is not NULL:
● node = node.left

● return node.key

 Largest: keep taking right child as far as we can
➔ max(node):

● while node.right is not NULL:
● node = node.right

● return node.key

 Could also implement recursively, but iterative 
solution is faster, less memory

55

33 88

22 44
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Successor / predecessorSuccessor / predecessor

 The successor of a node is
next in line in an in-order traversal
● Predecessor is previous in line

 If right subtree is not NULL:
● Successor = min of right subtree

 If right subtree is NULL:
● Walk up the tree until a parent link turns right

➔ successor(node):
● if node.right is not NULL:

● return min( node.right )
● (cur, par) = (node, node.parent)
● while par is not NULL and cur == par.right:

● (cur, par) = (par, par.parent)
● return par

88

44 99

22 55

44 88

77
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Inserting into a BSTInserting into a BST

 Do a search to find spot to add node:
➔ insert(root, key):

● cur = root
● while cur is not NULL:

● if key < cur.key:
● if cur.left is NULL:

● cur.left = new Node(key)
● cur.left.parent = cur
● return

● cur = cur.left
● else:

● if cur.right is NULL:
● cur.right = new Node(key)
● cur.right.parent = cur
● return

● cur = cur.right

88

44 99

22 55

44 88

77

11 33

insert(6)?insert(6)?go leftgo left

go rightgo right
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Deleting from a BSTDeleting from a BST

 If node z is a leaf, just delete it
(and update links)

 If node has one child, promote it to node's place
● Child brings its subtrees along with it

 If node has two children, find its successor y:
● Successor must be in right subtree,

with no left child (why?)
● Need to do a bit more splicing

66

33 88

22 44

55

del?del?
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Deletion, continuedDeletion, continued

 If the node z has two children, find its successor y:
● if successor is

a direct child,
just promote it:

● If successor is elsewhere in right tree:
 Replace it with its own right child r, then
 Replace the node z with the successor y

 End result: y replaces z, and the rest of
z's old right subtree
becomes
y's right subtree

33

11 88

55 99
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