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Outline for today

m Dynamic data structures: using pointers
m Linked lists
Variants: doubly-linked, circular
m Stacks and queues
mJrees
® Binary search trees (BSTSs)
Tree traversals
Searching
Min/max and successor/predecessor

Insert and delete
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Pointers

m Local variables created as a program runs are
stored in a region of memory called the heap

Static variables & formal parameters are stored
in the stack frame (size known at compile time)

m A pointer is a variable whose value refers to a
memory location in the heap

> Int myAge = 20;
> Int* myAgePtr;
> myAgePtr = &myAge; // get address of myAge
> cout << *myAgePtr; /| dereference the pointer

Pointer arithmetic can be dangerous

> *(myAgePtr+1); // segfault!
> *(103883); // ref random spot in mem
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Pointer-less languages

m To prevent segfaults, most languages (besides
C/C++) do not have explicit pointers

® |[nstead, you can create references (“aliases”):

> ages=1[3,5,7, 9] # Python list (mutable obj)
> myAges = ages # create an alias

> myAges[2] =11 # overwrites “7"”

> ages #[ 3,5 11, 9]

m Variables are entries
In @ hamespace, ages
mapping to locations [
In the heap

m Be aware of when a reference is made vs a copy!
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Linked lists

m Linear, array-like data structure, but

Dynamic (can change length)

+ Length does not need to be known at compile time)
Mid-list insertion/deletion is fast

+ Don't need to shift by copying
But random access is slower than array

+ Need to walk down list from head

class Node:
def init_(self, key=None, next=None):
self.key = key
self.next = next

head = Node(9)
head = Node(7, head) .
head = Node(5, head)

29 head = Node(3, head) head

TRINITY key next

WESTERN _
= - INMNFRSITY CMPT231: data structures 16 Oct 2012



Linked list variants

® The basic list is a singly-linked list

m Doubly-linked lists have both .prev and .next
pointers in each node:

> class Node:
def init (self, key=None, prev=None, next=None):
(self.key, self.prev, self.next) = (key, prev, next)

Also good to have both head and tail pointers

+ Better to have separate datatype for the overall list:

> class LinkedList:
def init_(self, head=None, tail=None):
(self.head, self.tail) = (head, tail)
> X = LinkedList(Node(3), Node(5))

\
> X.head.next = x.tail B.;t‘

> X.tail.prev = x.head

prev next

key l
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Circularly-linked lists

® |In a circular singly-linked list, the next pointer of
the last node points back to the first node:

D-ap-ah-ap-

head
When traversing the list, make sure we don't
just keep circling endlessly!

¢ e.g., store length of list, and track how many nodes
we've traversed

+ or: add a sentinel node with a special key

® |n a circular doubly-linked list, both next and prev
links wrap around
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Operations on linked lists

m Insert(key): create a new node with given key,
and insert it at the head of the list

> def insert(self, key=None):
self = Node(key, self)

m Search(key): return a reference to node with given
key, or return None if it doesn't exist

> def search(self, key):

cur = self
while cur !'= None:
If cur.key == key:
return cur
cur = cur.next

return None M M

: head
i.:.;:::"‘ B TRIMNITY Ccur
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Splicing nodes

m Delete(node): splice given node out of list

Can be given a reference directly to the node
+ Or given a key (for which we first search)
Update prev/next links in neighbouring nodes to

skip over the deleted node
B @

> node.prev.next = node.next .
> node.next.prev = node.prev

Free the unused memory so it can be reused

> del node

+ Otherwise it becomes garbage: allocated memory In
the heap that is unused and unreachable

+ Source of memory leaks: heap grows and grows as
, program runs
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Stacks and queues

m Stack: LIFO: last-in-first-out

like papers on a memo spike
® Queue: FIFO: first-in-first-out

like a pipeline, or a queue at the bank
m |Interface:

length(), isempty(): # items
oush(x): add x to stack/gueue
neek(): get item without deleti
oop(): peek and remove item
m Underflow: peek/pop on an empty stack/queue
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Implementing stacks/queues

m Stacks/queues are abstract data types (ADTs):
Defined in terms of their operations / interface

Various implementations have different
memory usage, computational complexity, etc.

m Can use either arrays or linked-lists to implement
e.g., stack with a singly-linked list:

> class Stack:
def init (self):
self.head = None

def push(self, key): # overflow not a concern
self.head = Node(key, self.head)
def pop(self): # watch for underflow!
item = self.head
4 self.nhead = self.head.next
TRINITY
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Trees

e TR INITY

m For binary trees, use 3 pointers
Parent, left child, right child

> class TreeNode:
def init (self, par=None, left=None, right=None):
(self.par, self.left, self.right) = (par, left, right)
> class Tree:

def Init (self, root=None):
self.root = root

m For d-way trees, with unknown degree d:

Pointers: parent,
first child, next sibling
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Search trees

® Trees for fast searching
m Operations: insert, delete, search
O(height of tree): for full tree, ©(lg n)
Can implement a dictionary or priority queue

m Kinds of trees include binary search trees (ch12),
red-black trees (ch13), B-trees (ch18)

m Binary search tree (BST): a binary tree with

BST property: at any node x,

¢+ Every node vy In left sub-tree has y = x
+ Every node vy in right sub-tree has y = x
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Tree traversals

® Traversals/walks print out all nodes

m Preorder: print self before either child

> preorder(node):

print node.key
preorder( node.left )
preorder( node.right )

Output: 5, 3, 2,4, 5, 8

m Postorder: print both children first before self
Output? Pseudocode?

® [norder: print left child, then self, then right child
Output? Pseudocode?

m Which is useful on a tree with the BST property?
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Expression trees

® Trees are also used to
parse & evaluate expressions:

+eg.,(2*(-4))+9
Which traversal produces this expression?
What tree would represent 2 * (-4 + 9)?
m Reverse Polish Notation (RPN):
*eg.:2,4-%9, +
Which traversal produces RPN?
Make an RPN calculator using a stack:

a4 z * 9 +
S —p ] ——Pp ] —Pp , ——Pp ) —p
p p p -8 -8 1
Y
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Searching a BST

m Comparison with node's key tells us
which subtree to recurse down:

> search(node, key):

If node is NULL or node.key == key:
return node
If key < node.key:
return search( node.left, key )
else:
return search( node.right, key )

+ e.qg., search(root, 4)
B Complexity is O(height of tree)
If tree is full, this is O(lg n)
But in worst-case: linked-list is also a tree!

W = want to keep tree balanced
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Min/max of BST

® Find the smallest/largest keys in a BST:

®m Smallest:
Keep taking left child as far as we can

> min(node):
while node.left is not NULL:
node = node.left
return node.key

m Largest: keep taking right child as far as we can

> max(node):
while node.right is not NULL:
node = node.right
return node.key

m Could also implement recursively, but iterative
» Solution is faster, less memory
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Successor / predecessor

m The successor of a node is
next in line in an in-order traversal

Predecessor Is previous in line
m If right subtree is not NULL:

Successor = min of right subtree
m If right subtree is NULL:

Walk up the tree until a parent link turns right

> successor(node):

If node.right is not NULL;:
return min( node.right )
(cur, par) = (node, node.parent)
while par is not NULL and cur == par.right:
W (cur, par) = (par, par.parent)
TRINITY return par
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Inserting into a BST

®m Do a search to find spot to add node:

> Insert(root, key):
cur = root

while cur is not NULL:
If key < cur.key:

8 if cur.left is NULL:
cur.left = new Node(key)
go left < cur.left.parent = cur insert(6)?
return
S cur = cur.left
else:
B if cur.right is NULL:
cur.right = new Node(key)
go right< cur.right.parent = cur
return
[ cur = cur.right
4
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Deleting from a BST

m |If node 7 is a leaf, just delete it
(and update links)

® If node has one child, promote it to node's place
Child brings its subtrees along with it
® |If node has two children, find its successor v:

Successor must be in right subtree,
with no left child (why?)

Need to do a bit more splicing

del?

»ha
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Deletion, continued

m If the node 7z has two children, find its successor v:

If successor is
a direct child,
just promote it:

If successor is elsewhere In right tree:

Replace it with its own right child r, then
Replace the node z with the successor vy

m End result: y replaces z, and the rest of
z's old right subtree
becomes
y's right subtree
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