Chl0, 12: Data Structures
using Pointers

16 Oct 2012

CMPT231

Dr. Sean Ho

Trinity Western University

reeait TRINITY
SRR \WESTFRN
5 ININERSITY

Outline for today

m Dynamic data structures: using pointers
m Linked lists
Variants: doubly-linked, circular
m Stacks and queues
mJrees
® Binary search trees (BSTSs)
Tree traversals
Searching
Min/max and successor/predecessor

Insert and delete

a9
TRINITY

WESTFRN

= | INIVERSITY

CMPT231: data structures 16 Oct 2012

Pointers

m Local variables created as a program runs are
stored in a region of memory called the heap

Static variables & formal parameters are stored
in the stack frame (size known at compile time)

m A pointer is a variable whose value refers to a
memory location in the heap

> Int myAge = 20;
> Int* myAgePtr;
> myAgePtr = &myAge; // get address of myAge
> cout << *myAgePtr; /| dereference the pointer

Pointer arithmetic can be dangerous

> *(myAgePtr+1); // segfault!
> *(103883); // ref random spot in mem

s TRINITY

% VAVESTER M)
T LINIVERSITY CMPT231: data structures 16 Oct 2012 3

myAgePtr

Pointer-less languages

m To prevent segfaults, most languages (besides
C/C++) do not have explicit pointers

® |[nstead, you can create references (“aliases”):

> ages=1[3,5,7, 9] # Python list (mutable obj)
> myAges = ages # create an alias

> myAges[2] =11 # overwrites “7"”

> ages #[3,5 11, 9]

m Variables are entries
In @ hamespace, ages
mapping to locations [
In the heap

m Be aware of when a reference is made vs a copy!

eap

Y

¥V

TRINITY
WESTERN

1 INVFRSITY CMPT231: data structures 16 Oct 2012 4

Outline for today

® Dynamic data structures: using pointers
m Linked lists
Variants: doubly-linked, circular
m Stacks and queues
RIEEEE
® Binary search trees (BSTs)
Tree traversals
Searching
Min/max and successor/predecessor
Insert and delete

»ha

X TRINITY
I \WFSTERN

P | INTVERSITY CMPT231: data structures 16 Oct 2012

Linked lists

m Linear, array-like data structure, but

Dynamic (can change length)

+ Length does not need to be known at compile time)
Mid-list insertion/deletion is fast

+ Don't need to shift by copying
But random access is slower than array

+ Need to walk down list from head

class Node:
def init_(self, key=None, next=None):
self.key = key
self.next = next

head = Node(9)
head = Node(7, head) .
head = Node(5, head)

29 head = Node(3, head) head

TRINITY key next

WESTERN _
= - INMNFRSITY CMPT231: data structures 16 Oct 2012

Linked list variants

® The basic list is a singly-linked list

m Doubly-linked lists have both .prev and .next
pointers in each node:

> class Node:
def init (self, key=None, prev=None, next=None):
(self.key, self.prev, self.next) = (key, prev, next)

Also good to have both head and tail pointers

+ Better to have separate datatype for the overall list:

> class LinkedList:
def init_(self, head=None, tail=None):
(self.head, self.tail) = (head, tail)
> X = LinkedList(Node(3), Node(5))

\
> X.head.next = x.tail B.;t‘

> X.tail.prev = x.head

prev next

key l

) ;
Wi TRINITY head tail
WESTERN _
1 INVFRSITY CMPT231: data structures 16 Oct 2012 7

Circularly-linked lists

® |In a circular singly-linked list, the next pointer of
the last node points back to the first node:

D-ap-ah-ap-

head
When traversing the list, make sure we don't
just keep circling endlessly!

¢ e.g., store length of list, and track how many nodes
we've traversed

+ or: add a sentinel node with a special key

® |n a circular doubly-linked list, both next and prev
links wrap around

Mo

X TRINITY
I \WFSTERN

Gl | INTVERSITY CMPT231: data structures 16 Oct 2012

Operations on linked lists

m Insert(key): create a new node with given key,
and insert it at the head of the list

> def insert(self, key=None):
self = Node(key, self)

m Search(key): return a reference to node with given
key, or return None if it doesn't exist

> def search(self, key):

cur = self
while cur !'= None:
If cur.key == key:
return cur
cur = cur.next

return None M M

: head
i.:.;:::"‘ B TRIMNITY Ccur

AR \\TCTERN |
1 INVFRSITY CMPT231: data structures 16 Oct 2012 9

Splicing nodes

m Delete(node): splice given node out of list

Can be given a reference directly to the node
+ Or given a key (for which we first search)
Update prev/next links in neighbouring nodes to

skip over the deleted node
B @

> node.prev.next = node.next .
> node.next.prev = node.prev

Free the unused memory so it can be reused

> del node

+ Otherwise it becomes garbage: allocated memory In
the heap that is unused and unreachable

+ Source of memory leaks: heap grows and grows as
, program runs

A L FCTERN
1 INIVERSITY

CMPT231: data structures 16 Oct 2012 10

Outline for today

m Dynamic data structures: using pointers
m Linked lists
Variants: doubly-linked, circular
m Stacks and queues
RIEEEE
® Binary search trees (BSTs)
Tree traversals
Searching
Min/max and successor/predecessor
Insert and delete

Elii::i' g TRINITY
EREE \WESTERN
= 1 INIVFRSITY

CMPT231: data structures 16 Oct 2012 11

Stacks and queues

m Stack: LIFO: last-in-first-out

like papers on a memo spike
® Queue: FIFO: first-in-first-out

like a pipeline, or a queue at the bank
m |Interface:

length(), isempty(): # items
oush(x): add x to stack/gueue
neek(): get item without deleti
oop(): peek and remove item
m Underflow: peek/pop on an empty stack/queue

leadenergy.org

i xmrrnm

"5 1 INIVERSITY CMPT231: data structures 16 Oct 2012 12

http://www.evolveimages.com/media/3df27836-fb51-11e1-a872-00259030440e-office-message-spike-with-stacked-paper-messages
http://www.evolveimages.com/media/3df27836-fb51-11e1-a872-00259030440e-office-message-spike-with-stacked-paper-messages
http://leadenergy.org/2011/02/an-analysis-of-keystone-xl-of-politics-profits-and-pipelines/
http://leadenergy.org/2011/02/an-analysis-of-keystone-xl-of-politics-profits-and-pipelines/

Implementing stacks/queues

m Stacks/queues are abstract data types (ADTs):
Defined in terms of their operations / interface

Various implementations have different
memory usage, computational complexity, etc.

m Can use either arrays or linked-lists to implement
e.g., stack with a singly-linked list:

> class Stack:
def init (self):
self.head = None

def push(self, key): # overflow not a concern
self.head = Node(key, self.head)
def pop(self): # watch for underflow!
item = self.head
4 self.nhead = self.head.next
TRINITY
MEWTFDM CMPT231: data structures 16 Oct 2012 13

1 INIFRSITY

Outline for today

m Dynamic data structures: using pointers
m Linked lists
Variants: doubly-linked, circular
m Stacks and queues
mJrees
m Binary search trees (BSTs)
Tree traversals
Searching
Min/max and successor/predecessor
Insert and delete

Ewad® TR INITY
EEEE \AECTERN
L INIERSITY

CMPT231: data structures 16 Oct 2012 14

Trees

e TR INITY

m For binary trees, use 3 pointers
Parent, left child, right child

> class TreeNode:
def init (self, par=None, left=None, right=None):
(self.par, self.left, self.right) = (par, left, right)
> class Tree:

def Init (self, root=None):
self.root = root

m For d-way trees, with unknown degree d:

Pointers: parent,
first child, next sibling

30 \\FSTFRN

= IHiUF_I?f:IT\—" CMPT231: data structures 16 Oct 2012 15

Search trees

® Trees for fast searching
m Operations: insert, delete, search
O(height of tree): for full tree, ©(lg n)
Can implement a dictionary or priority queue

m Kinds of trees include binary search trees (ch12),
red-black trees (ch13), B-trees (ch18)

m Binary search tree (BST): a binary tree with

BST property: at any node x,

¢+ Every node vy In left sub-tree has y = x
+ Every node vy in right sub-tree has y = x

Bt TRINITY
=388 \\ESTERN
5 L INIVERSITY

CMPT231: data structures 16 Oct 2012 16

Tree traversals

® Traversals/walks print out all nodes

m Preorder: print self before either child

> preorder(node):

print node.key
preorder(node.left)
preorder(node.right)

Output: 5, 3, 2,4, 5, 8

m Postorder: print both children first before self
Output? Pseudocode?

® [norder: print left child, then self, then right child
Output? Pseudocode?

m Which is useful on a tree with the BST property?

Ry TRINITY

1 WESTFRN _
T INIVERSITY CMPT231: data structures 16 Oct 2012

17

Expression trees

® Trees are also used to
parse & evaluate expressions:

+eg.,(2*(-4))+9
Which traversal produces this expression?
What tree would represent 2 * (-4 + 9)?
m Reverse Polish Notation (RPN):
*eg.:2,4-%9, +
Which traversal produces RPN?
Make an RPN calculator using a stack:

a4 z * 9 +
S —p] ——Pp] —Pp , ——Pp) —p
p p p -8 -8 1
Y
TRINITY
. WESTERN CMPT231: data structures 16 Oct 2012 18

LINIFRSITY

Outline for today

m Dynamic data structures: using pointers
m Linked lists
Variants: doubly-linked, circular
m Stacks and queues
RIEEEE
® Binary search trees (BSTs)
Tree traversals
Searching
Min/max and successor/predecessor
Insert and delete

Y

= & TRINITY
T AMFCTERN

R IHi\IF_I?fZIT"n—' CMPT231: data structures 16 Oct 2012 19

Searching a BST

m Comparison with node's key tells us
which subtree to recurse down:

> search(node, key):

If node is NULL or node.key == key:
return node
If key < node.key:
return search(node.left, key)
else:
return search(node.right, key)

+ e.qg., search(root, 4)
B Complexity is O(height of tree)
If tree is full, this is O(lg n)
But in worst-case: linked-list is also a tree!

W = want to keep tree balanced
TRINITY

WESTERN
1 INIVERSITY

CMPT231: data structures 16 Oct 2012 p0)

Min/max of BST

® Find the smallest/largest keys in a BST:

®m Smallest:
Keep taking left child as far as we can

> min(node):
while node.left is not NULL:
node = node.left
return node.key

m Largest: keep taking right child as far as we can

> max(node):
while node.right is not NULL:
node = node.right
return node.key

m Could also implement recursively, but iterative
» Solution is faster, less memory

% TRINITY
WESTERN _
1 INIFRSITY CMPT231: data structures 16 Oct 2012

21

Successor / predecessor

m The successor of a node is
next in line in an in-order traversal

Predecessor Is previous in line
m If right subtree is not NULL:

Successor = min of right subtree
m If right subtree is NULL:

Walk up the tree until a parent link turns right

> successor(node):

If node.right is not NULL;:
return min(node.right)
(cur, par) = (node, node.parent)
while par is not NULL and cur == par.right:
W (cur, par) = (par, par.parent)
TRINITY return par

0 | INIVFRSITY CMPT231: data structures 16 Oct 2012 22

Inserting into a BST

®m Do a search to find spot to add node:

> Insert(root, key):
cur = root

while cur is not NULL:
If key < cur.key:

8 if cur.left is NULL:
cur.left = new Node(key)
go left < cur.left.parent = cur insert(6)?
return
S cur = cur.left
else:
B if cur.right is NULL:
cur.right = new Node(key)
go right< cur.right.parent = cur
return
[cur = cur.right
4
TRINITY
*EWTFEM CMPT231: data structures 16 Oct 2012 23

1 INIFRSITY

Deleting from a BST

m |If node 7 is a leaf, just delete it
(and update links)

® If node has one child, promote it to node's place
Child brings its subtrees along with it
® |If node has two children, find its successor v:

Successor must be in right subtree,
with no left child (why?)

Need to do a bit more splicing

del?

»ha

TRINITY
VWESTERN

1 IHiUF_I?f:ITV CMPT231: data structures 16 Oct 2012

24

Deletion, continued

m If the node 7z has two children, find its successor v:

If successor is
a direct child,
just promote it:

If successor is elsewhere In right tree:

Replace it with its own right child r, then
Replace the node z with the successor vy

m End result: y replaces z, and the rest of
z's old right subtree
becomes
y's right subtree

#é TRINITY

§ VAECTERN

= FRSITY CMPT231: data structures 16 Oct 2012 25

Outline for today

m Dynamic data structures: using pointers
m Linked lists
Variants: doubly-linked, circular
m Stacks and queues
RIEEEE
® Binary search trees (BSTs)
Tree traversals
Searching
Min/max and successor/predecessor
Insert and delete

»ha

X TRINITY
I \WFSTERN

SR INIVRRSITY CMPT231: data structures 16 Oct 2012 26

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

