
Ch10, 12: Data StructuresCh10, 12: Data Structures
using Pointersusing Pointers

16 Oct 2012
CMPT231
Dr. Sean Ho
Trinity Western University

16 Oct 2012CMPT231: data structures 2CMPT231: data structuresCMPT231: data structures

Outline for todayOutline for today

 Dynamic data structures: using pointers
 Linked lists

● Variants: doubly-linked, circular

 Stacks and queues
 Trees
 Binary search trees (BSTs)

● Tree traversals
● Searching
● Min/max and successor/predecessor
● Insert and delete

16 Oct 2012CMPT231: data structures 3CMPT231: data structuresCMPT231: data structures

PointersPointers

 Local variables created as a program runs are
stored in a region of memory called the heap
● Static variables & formal parameters are stored

in the stack frame (size known at compile time)
 A pointer is a variable whose value refers to a

memory location in the heap
➔ int myAge = 20;
➔ int* myAgePtr;
➔ myAgePtr = &myAge; // get address of myAge
➔ cout << *myAgePtr; // dereference the pointer

● Pointer arithmetic can be dangerous
➔ *(myAgePtr+1); // segfault!
➔ *(103883); // ref random spot in mem

20202020
myAgemyAge

0xff0...0xff0...0xff0...0xff0...

myAgePtrmyAgePtr

16 Oct 2012CMPT231: data structures 4CMPT231: data structuresCMPT231: data structures

Pointer-less languagesPointer-less languages

 To prevent segfaults, most languages (besides
C/C++) do not have explicit pointers

 Instead, you can create references (“aliases”):
➔ ages = [3, 5, 7, 9] # Python list (mutable obj)
➔ myAges = ages # create an alias
➔ myAges[2] = 11 # overwrites “7”
➔ ages # [3, 5, 11, 9]

 Variables are entries
in a namespace,
mapping to locations
in the heap

 Be aware of when a reference is made vs a copy!

<list><list>
3, 5, 7, 93, 5, 7, 9
<list><list>

3, 5, 7, 93, 5, 7, 9

Namespace:
__main__

ages 0xff0...

myAges 0xff0...

Namespace:
__main__

ages 0xff0...

myAges 0xff0... HeapHeap

16 Oct 2012CMPT231: data structures 5CMPT231: data structuresCMPT231: data structures

Outline for todayOutline for today

 Dynamic data structures: using pointers
 Linked lists

● Variants: doubly-linked, circular

 Stacks and queues
 Trees
 Binary search trees (BSTs)

● Tree traversals
● Searching
● Min/max and successor/predecessor
● Insert and delete

16 Oct 2012CMPT231: data structures 6CMPT231: data structuresCMPT231: data structures

Linked listsLinked lists

 Linear, array-like data structure, but
● Dynamic (can change length)

 Length does not need to be known at compile time)

● Mid-list insertion/deletion is fast
 Don't need to shift by copying

● But random access is slower than array
 Need to walk down list from head

33 55 77 9 /9 /

headhead
keykey nextnext

class Node:
def __init__(self, key=None, next=None):

self.key = key
self.next = next

head = Node(9)
head = Node(7, head)
head = Node(5, head)
head = Node(3, head)

class Node:
def __init__(self, key=None, next=None):

self.key = key
self.next = next

head = Node(9)
head = Node(7, head)
head = Node(5, head)
head = Node(3, head)

16 Oct 2012CMPT231: data structures 7CMPT231: data structuresCMPT231: data structures

Linked list variantsLinked list variants

 The basic list is a singly-linked list
 Doubly-linked lists have both .prev and .next

pointers in each node:
➔ class Node:

● def __init__(self, key=None, prev=None, next=None):
● (self.key, self.prev, self.next) = (key, prev, next)

● Also good to have both head and tail pointers
 Better to have separate datatype for the overall list:

➔ class LinkedList:
● def __init__(self, head=None, tail=None):

● (self.head, self.tail) = (head, tail)
➔ x = LinkedList(Node(3), Node(5))
➔ x.head.next = x.tail
➔ x.tail.prev = x.head

33

headhead

55

tailtail

prevprev

keykey

nextnext

16 Oct 2012CMPT231: data structures 8CMPT231: data structuresCMPT231: data structures

Circularly-linked listsCircularly-linked lists

 In a circular singly-linked list, the next pointer of
the last node points back to the first node:

● When traversing the list, make sure we don't
just keep circling endlessly!

 e.g., store length of list, and track how many nodes
we've traversed

 or: add a sentinel node with a special key

 In a circular doubly-linked list, both next and prev
links wrap around

33 55 77 99

headhead

16 Oct 2012CMPT231: data structures 9CMPT231: data structuresCMPT231: data structures

Operations on linked listsOperations on linked lists

 Insert(key): create a new node with given key,
and insert it at the head of the list

➔ def insert(self, key=None):
● self = Node(key, self)

 Search(key): return a reference to node with given
key, or return None if it doesn't exist

➔ def search(self, key):
● cur = self
● while cur != None:

● if cur.key == key:
● return cur

● cur = cur.next
● return None

33 55 77 9 /9 /

headhead
curcur

16 Oct 2012CMPT231: data structures 10CMPT231: data structuresCMPT231: data structures

Splicing nodesSplicing nodes

 Delete(node): splice given node out of list
● Can be given a reference directly to the node

 Or given a key (for which we first search)

● Update prev/next links in neighbouring nodes to
skip over the deleted node

➔ node.prev.next = node.next
➔ node.next.prev = node.prev

● Free the unused memory so it can be reused
➔ del node

 Otherwise it becomes garbage: allocated memory in
the heap that is unused and unreachable

 Source of memory leaks: heap grows and grows as
program runs

33 55 77

16 Oct 2012CMPT231: data structures 11CMPT231: data structuresCMPT231: data structures

Outline for todayOutline for today

 Dynamic data structures: using pointers
 Linked lists

● Variants: doubly-linked, circular

 Stacks and queues
 Trees
 Binary search trees (BSTs)

● Tree traversals
● Searching
● Min/max and successor/predecessor
● Insert and delete

16 Oct 2012CMPT231: data structures 12CMPT231: data structuresCMPT231: data structures

Stacks and queuesStacks and queues

 Stack: LIFO: last-in-first-out
● like papers on a memo spike

 Queue: FIFO: first-in-first-out
● like a pipeline, or a queue at the bank

 Interface:
● length(), isempty(): # items
● push(x): add x to stack/queue
● peek(): get item without deleting
● pop(): peek and remove item

 Underflow: peek/pop on an empty stack/queue
 Overflow: push on a full stack/queue

©Dennis Galante/evolveimages.com©Dennis Galante/evolveimages.com

leadenergy.orgleadenergy.org

http://www.evolveimages.com/media/3df27836-fb51-11e1-a872-00259030440e-office-message-spike-with-stacked-paper-messages
http://www.evolveimages.com/media/3df27836-fb51-11e1-a872-00259030440e-office-message-spike-with-stacked-paper-messages
http://leadenergy.org/2011/02/an-analysis-of-keystone-xl-of-politics-profits-and-pipelines/
http://leadenergy.org/2011/02/an-analysis-of-keystone-xl-of-politics-profits-and-pipelines/

16 Oct 2012CMPT231: data structures 13CMPT231: data structuresCMPT231: data structures

Implementing stacks/queuesImplementing stacks/queues

 Stacks/queues are abstract data types (ADTs):
● Defined in terms of their operations / interface
● Various implementations have different

memory usage, computational complexity, etc.
 Can use either arrays or linked-lists to implement

● e.g., stack with a singly-linked list:
➔ class Stack:

● def __init__(self):
● self.head = None

● def push(self, key): # overflow not a concern
● self.head = Node(key, self.head)

● def pop(self): # watch for underflow!
● item = self.head
● self.head = self.head.next

16 Oct 2012CMPT231: data structures 14CMPT231: data structuresCMPT231: data structures

Outline for todayOutline for today

 Dynamic data structures: using pointers
 Linked lists

● Variants: doubly-linked, circular

 Stacks and queues
 Trees
 Binary search trees (BSTs)

● Tree traversals
● Searching
● Min/max and successor/predecessor
● Insert and delete

16 Oct 2012CMPT231: data structures 15CMPT231: data structuresCMPT231: data structures

TreesTrees

 For binary trees, use 3 pointers:
● Parent, left child, right child

➔ class TreeNode:
● def __init__(self, par=None, left=None, right=None):

● (self.par, self.left, self.right) = (par, left, right)
➔ class Tree:

● def __init__(self, root=None):
● self.root = root

 For d-way trees, with unknown degree d:
● Pointers: parent,

first child, next sibling

16 Oct 2012CMPT231: data structures 16CMPT231: data structuresCMPT231: data structures

Search treesSearch trees

 Trees for fast searching
 Operations: insert, delete, search

● Θ(height of tree): for full tree, Θ(lg n)
● Can implement a dictionary or priority queue

 Kinds of trees include binary search trees (ch12),
red-black trees (ch13), B-trees (ch18)

 Binary search tree (BST): a binary tree with
● BST property: at any node x,

 Every node y in left sub-tree has y ≤ x
 Every node y in right sub-tree has y ≥ x

55

33 88

22 44

55

16 Oct 2012CMPT231: data structures 17CMPT231: data structuresCMPT231: data structures

Tree traversalsTree traversals

 Traversals/walks print out all nodes
 Preorder: print self before either child

➔ preorder(node):
● print node.key
● preorder(node.left)
● preorder(node.right)

● Output: 5, 3, 2, 4, 5, 8
 Postorder: print both children first before self

● Output? Pseudocode?
 Inorder: print left child, then self, then right child

● Output? Pseudocode?
 Which is useful on a tree with the BST property?

55

33 88

22 44

55

16 Oct 2012CMPT231: data structures 18CMPT231: data structuresCMPT231: data structures

Expression treesExpression trees

 Trees are also used to
parse & evaluate expressions:

 e.g., (2 * (-4)) + 9

● Which traversal produces this expression?
● What tree would represent 2 * (-4 + 9)?

 Reverse Polish Notation (RPN):
 e.g.: 2, 4, -, *, 9, +

● Which traversal produces RPN?
● Make an RPN calculator using a stack:

++

** 99

22 --

44

.

2

.

2

4

2

4

2

-4

2

-4

2

.

-8

.

-8

9

-8

9

-8

.

1

.

1

44 –– ** 99 ++

16 Oct 2012CMPT231: data structures 19CMPT231: data structuresCMPT231: data structures

Outline for todayOutline for today

 Dynamic data structures: using pointers
 Linked lists

● Variants: doubly-linked, circular

 Stacks and queues
 Trees
 Binary search trees (BSTs)

● Tree traversals
● Searching
● Min/max and successor/predecessor
● Insert and delete

16 Oct 2012CMPT231: data structures 20CMPT231: data structuresCMPT231: data structures

Searching a BSTSearching a BST

 Comparison with node's key tells us
which subtree to recurse down:

➔ search(node, key):
● if node is NULL or node.key == key:

● return node
● if key < node.key:

● return search(node.left, key)
● else:

● return search(node.right, key)
 e.g., search(root, 4)

 Complexity is O(height of tree)
● If tree is full, this is Θ(lg n)
● But in worst-case: linked-list is also a tree!
● ⇒ want to keep tree balanced

55

33 88

22 44

55

rootroot

33

44

55

88

16 Oct 2012CMPT231: data structures 21CMPT231: data structuresCMPT231: data structures

Min/max of BSTMin/max of BST

 Find the smallest/largest keys in a BST:
 Smallest:

● Keep taking left child as far as we can
➔ min(node):

● while node.left is not NULL:
● node = node.left

● return node.key

 Largest: keep taking right child as far as we can
➔ max(node):

● while node.right is not NULL:
● node = node.right

● return node.key

 Could also implement recursively, but iterative
solution is faster, less memory

55

33 88

22 44

55

16 Oct 2012CMPT231: data structures 22CMPT231: data structuresCMPT231: data structures

Successor / predecessorSuccessor / predecessor

 The successor of a node is
next in line in an in-order traversal
● Predecessor is previous in line

 If right subtree is not NULL:
● Successor = min of right subtree

 If right subtree is NULL:
● Walk up the tree until a parent link turns right

➔ successor(node):
● if node.right is not NULL:

● return min(node.right)
● (cur, par) = (node, node.parent)
● while par is not NULL and cur == par.right:

● (cur, par) = (par, par.parent)
● return par

88

44 99

22 55

44 88

77

11 33 s?s?

s?s?

p?p?

16 Oct 2012CMPT231: data structures 23CMPT231: data structuresCMPT231: data structures

Inserting into a BSTInserting into a BST

 Do a search to find spot to add node:
➔ insert(root, key):

● cur = root
● while cur is not NULL:

● if key < cur.key:
● if cur.left is NULL:

● cur.left = new Node(key)
● cur.left.parent = cur
● return

● cur = cur.left
● else:

● if cur.right is NULL:
● cur.right = new Node(key)
● cur.right.parent = cur
● return

● cur = cur.right

88

44 99

22 55

44 88

77

11 33

insert(6)?insert(6)?go leftgo left

go rightgo right

16 Oct 2012CMPT231: data structures 24CMPT231: data structuresCMPT231: data structures

Deleting from a BSTDeleting from a BST

 If node z is a leaf, just delete it
(and update links)

 If node has one child, promote it to node's place
● Child brings its subtrees along with it

 If node has two children, find its successor y:
● Successor must be in right subtree,

with no left child (why?)
● Need to do a bit more splicing

66

33 88

22 44

55

del?del?

16 Oct 2012CMPT231: data structures 25CMPT231: data structuresCMPT231: data structures

Deletion, continuedDeletion, continued

 If the node z has two children, find its successor y:
● if successor is

a direct child,
just promote it:

● If successor is elsewhere in right tree:
 Replace it with its own right child r, then
 Replace the node z with the successor y

 End result: y replaces z, and the rest of
z's old right subtree
becomes
y's right subtree

33

11 88

55 99

77

del?del?

16 Oct 2012CMPT231: data structures 26CMPT231: data structuresCMPT231: data structures

Outline for todayOutline for today

 Dynamic data structures: using pointers
 Linked lists

● Variants: doubly-linked, circular

 Stacks and queues
 Trees
 Binary search trees (BSTs)

● Tree traversals
● Searching
● Min/max and successor/predecessor
● Insert and delete

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

