
Ch18: B-TreesCh18: B-Trees

23 Oct 2012
CMPT231
Dr. Sean Ho
Trinity Western University

23 Oct 2012CMPT231: B-trees, review 2CMPT231: B-trees, reviewCMPT231: B-trees, review

Outline for todayOutline for today

 B-Trees
● Motivation: properties of spinning disks
● B-tree concept

● Search in O(t logt n)

● Insert in O(t logt n)

● Delete in O(t logt n)

● Application to filesystems
 Midterm review (ch6-8, 11)

23 Oct 2012CMPT231: B-trees, review 3CMPT231: B-trees, reviewCMPT231: B-trees, review

Balancing search treesBalancing search trees

 Complexity of most tree ops depends on height
● Search, insert, delete
● Worst case: tree becomes a linked list

 How to keep tree balanced, bushy (low height)?
 BSTs with tree rotations:

● Red-black trees (ch13)
 Levels alternate colour: longest path ≤ 2 * shortest

● AVL trees
 Rotate after insert/delete

● Splay trees
 Search/ins/del rotate node to root and rebalance

23 Oct 2012CMPT231: B-trees, review 4CMPT231: B-trees, reviewCMPT231: B-trees, review

Trees for disk storageTrees for disk storage

 Accessing a spinning disk:
● Seek: move head to desired track,

wait until desired sector comes to head (slow)
● Throughput: reading consecutive sectors (fast)

 Lots of small iops (I/O operations/sec) are bad
● ⇒ so buffer and do I/O in large pages at a time

 Minimise # disk accesses (also good for network fs)

● Read pages to RAM, modify, and write back
 Only a limited # pages can be in RAM at a time

 Tree-based disk filesystem: 1 node ↔ 1 page
● Very low, bushy tree with large degree

victimoftechnology.comvictimoftechnology.com

http://www.victimoftechnology.com/hard/harddriveadventure.html
http://www.victimoftechnology.com/hard/harddriveadventure.html

23 Oct 2012CMPT231: B-trees, review 5CMPT231: B-trees, reviewCMPT231: B-trees, review

Outline for todayOutline for today

 B-Trees
● Motivation: properties of spinning disks
● B-tree concept

● Search in O(t logt n)

● Insert in O(t logt n)

● Delete in O(t logt n)

● Application to filesystems
 Midterm review (ch6-8, 11)

23 Oct 2012CMPT231: B-trees, review 6CMPT231: B-trees, reviewCMPT231: B-trees, review

B-treesB-trees

● Generalisation of BST: (left) ≤ key ≤ (right)
 In a B-tree of min-degree t, every node has:

● nkeys sorted keys (t-1 < nkeys < 2t-1)
● (if non-leaf) nkeys+1 links to child nodes,

interleaved between the keys
 Hence degree is between t and 2t

 All leaves are at same depth h
● For a tree of min-degree t and height h,

what are min/max # of keys stored?

 B+-tree: data/payload stored in leaves
 B*-tree: 2t-1 < nkeys < 3t-1

23 Oct 2012CMPT231: B-trees, review 7CMPT231: B-trees, reviewCMPT231: B-trees, review

B-tree with t=2B-tree with t=2

 Also called 2-3-4 tree:

∅ k1 ∅ k2 ∅ k3 ∅∅ k1 ∅ k2 ∅ k3 ∅ ∅ k1 ∅∅ k1 ∅ ∅ k1 ∅ k2 ∅∅ k1 ∅ k2 ∅

k1 k2
k1 k2

k1 k2
k1 k2

∅ k1 ∅∅ k1 ∅

k1
k1k1
k1 ……

......

data (logical block addrs) go here in a B+ treedata (logical block addrs) go here in a B+ tree

23 Oct 2012CMPT231: B-trees, review 8CMPT231: B-trees, reviewCMPT231: B-trees, review

B-tree operationsB-tree operations

 Standard search tree interface:
● Search, insert, delete

 Track not only CPU complexity, but also
disk accesses: read()s & write()s

● Complexity in terms of t and h = Θ(logt n)

● Constrained variable degree (between t and 2t)
keeps tree balanced

 Keep root node in RAM
● Other nodes need to be read from disk
● Root needs to be written to disk if modified

23 Oct 2012CMPT231: B-trees, review 9CMPT231: B-trees, reviewCMPT231: B-trees, review

B-tree: searchB-tree: search
 search(node, key):

● // Linear search for the right key
for (i = 1; i ≤ node.size and key > node.key[i]; i++)

● // Found it in this node!
if i ≤ node.size and key == node.key[i]:

return (node, i)

● // Not here and we're a leaf
if x.isleaf: return NULL

● // Load child node from disk and recurse
read(node.child[i])
return search(node.child[i], key)

 Complexity (worst-case): O(th) = O(t logt n)

 Disk accesses (worst-case): O(h) = O(logt n)

23 Oct 2012CMPT231: B-trees, review 10CMPT231: B-trees, reviewCMPT231: B-trees, review

Outline for todayOutline for today

 B-Trees
● Motivation: properties of spinning disks
● B-tree concept

● Search in O(t logt n)

● Insert in O(t logt n)

● Delete in O(t logt n)

● Application to filesystems
 Midterm review (ch6-8, 11)

23 Oct 2012CMPT231: B-trees, review 11CMPT231: B-trees, reviewCMPT231: B-trees, review

B-tree: insertB-tree: insert

 As with BST, first search for where key should go
● Search down to leaf node

 If leaf node is not full, just insert new key there
 If leaf node is full (2t-1 keys), need to split:

● Create two nodes each with t-1 keys

● Median key (keyt) moves up to parent

● Iterate on parent, splitting as needed

CPU: O(th)
Disk: O(h)
CPU: O(th)
Disk: O(h)

t=4t=4

23 Oct 2012CMPT231: B-trees, review 12CMPT231: B-trees, reviewCMPT231: B-trees, review

Insert ex.Insert ex.

 (a) initial tree
(t=3)

 (b) insert into
non-full leaf

 (c) insert into
full leaf: split

 (d) insert and
split up to root

 (e) 1-level split

23 Oct 2012CMPT231: B-trees, review 13CMPT231: B-trees, reviewCMPT231: B-trees, review

B-tree: deleteB-tree: delete

 Descend tree, ensuring each node has ≥ t keys
before we examine it (space for deletion):

 If key is in node and it's a leaf, just delete it
 If key is in node and it's not a leaf:

● If left child has ≥ t keys, replace w/predecessor
● If right child has ≥ t keys, replace w/successor
● Else, merge left+right children & delete key

 If key is not in node and it's not a leaf:
Find the child that key should be in: if t-1 keys,
● If left/right sibling has ≥ t keys, steal one
● Else, merge child with a sibling

23 Oct 2012CMPT231: B-trees, review 14CMPT231: B-trees, reviewCMPT231: B-trees, review

DeleteDelete

 (a) (t=3)
 (b) internal

nodes ≥ t,
key in leaf

 (c) key in
non-leaf: use
predecessor

 (d) key in
non-leaf:
merge
children

23 Oct 2012CMPT231: B-trees, review 15CMPT231: B-trees, reviewCMPT231: B-trees, review

Delete, cont.Delete, cont.

 (e) internal node CL
too small, and sibling
too small to steal from
● ⇒ Merge w/sibling

 (e') Merging pushes
key P down from root

 (f) B not in CLPTX,
AB child too small:
● ⇒ Steal from EJK

23 Oct 2012CMPT231: B-trees, review 16CMPT231: B-trees, reviewCMPT231: B-trees, review

B-tree summaryB-tree summary

 Generalisation of BST, but:

● All leaves at same height h (= Θ(logt n))

● Degree of each node is between t and 2t
 Operations:

● Create: CPU O(1), disk O(1)
● Search, insert, delete: CPU O(th), disk O(h)
● When modifying tree, need to ensure that

degree of every node stays between t and 2t
(so # keys is between t-1 and 2t-1)

23 Oct 2012CMPT231: B-trees, review 17CMPT231: B-trees, reviewCMPT231: B-trees, review

Outline for todayOutline for today

 B-Trees
● Motivation: properties of spinning disks
● B-tree concept

● Search in O(t logt n)

● Insert in O(t logt n)

● Delete in O(t logt n)

● Application to filesystems
 Midterm review (ch6-8, 11)

23 Oct 2012CMPT231: B-trees, review 18CMPT231: B-trees, reviewCMPT231: B-trees, review

B-trees in filesystemsB-trees in filesystems

 Filesystems store: files, directories, metadata
(e.g., name, owner, permissions, update time)

 Contents of files are in (1 or more) extents on disk
● Logical Block Addresses interpretable by HDD

 Filesystems can use B-trees for lookup tables:
● Inode table: metadata for each object

 Indexed by inode, unique to each object

● Extents table: LBAs for each extent
 Or the actual data, if it's small enough

● Journal: transaction log
 Preserve integrity in case a long write fails

23 Oct 2012CMPT231: B-trees, review 19CMPT231: B-trees, reviewCMPT231: B-trees, review

Filesystems that use B-treesFilesystems that use B-trees

 NTFS indexes (inode tables)
 Mac HFS catalog records (inodes): B+-trees
 Linux ext3/ext4 directory indexes: Htrees

● store hashed filenames for fast lookup
 Linux BTRFS (“B-TRee FileSystem”):

● B-trees used for everything:
 Directory trees (with hashed filenames)
 Extent tree (file data as LBA or actual data)
 Log tree
 Root tree storing links to all other trees!
 … much more

23 Oct 2012CMPT231: B-trees, review 20CMPT231: B-trees, reviewCMPT231: B-trees, review

Outline for todayOutline for today

 B-Trees
● Motivation: properties of spinning disks
● B-tree concept

● Search in O(t logt n)

● Insert in O(t logt n)

● Delete in O(t logt n)

● Application to filesystems
 Midterm review (ch6-8, 11)

23 Oct 2012CMPT231: B-trees, review 21CMPT231: B-trees, reviewCMPT231: B-trees, review

Review for exam2: ch6-8, 11Review for exam2: ch6-8, 11

 Hand-simulation, complexity analysis
 Ch6: Heapsort

● Trees
● Max heaps: max-heap property, heapify()
● Heapsort: building a heap, using it for sorting
● Priority queue: ops, complexity

 Ch7: Quicksort
● Naive quicksort with fixed pivot
● Randomised pivot
● Complexity analysis: expected running time E[]

23 Oct 2012CMPT231: B-trees, review 22CMPT231: B-trees, reviewCMPT231: B-trees, review

Review for exam2: ch6-8, 11Review for exam2: ch6-8, 11

 Ch8: Linear-time sorts (assumptions!)
● Decision tree model, why Ω(n lg n) comparisons
● Counting sort (census + move): Θ(n + k)
● Radix sort (with r-bit digits): Θ(d(n + k))
● Bucket sort: Θ(n) expected time

 Ch11: Hash tables
● Hash function, hash collisions, chaining
● Load factor α = n/(# buckets), search in Θ(1+α)
● Hashes: div, mul, universal hashing
● Open addressing: linear, quad, double-hash

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

