chl5: Dynamic Programming

6 Nov 2012

CMPT231

Dr. Sean Ho

Trinity Western University

I
TRINITY
WESTFRN
1 INIFRSITY

Outline for today

m Dynamic programming for optimisation
Optimal substructure

Naive top-down
Top-down with memoisation

Bottom-up
m Examples:

Rod-cutting problem

Fibonacci

Matrix-chain multiplication

Shortest unweighted path
¥y

Optimal binary search trees

ﬁ TRINITY
WESTFRN

1 INIVERSITY CMPT231: dynamic programming 6 Nov 2012

Optimisation

m A large class of real-world problems consist of:

* Find the maximum (or minimum) value of some
goal/cost function, over some search space

m Search space may be discrete or continuous,
low-dimensioned or very high (10° or more) dim

m Goal function may be analytic or some black-box
» May or may not have accessible derivatives

m Exhaustive search is
usually way too slow

e
TRINITY
WESTERN
LINIVERSITY

CMPT231: dynamic programming 6 Nov 2012

http://www.flickr.com/photos/andreas_hopf/5511322099/in/photostream
http://www.flickr.com/photos/andreas_hopf/5511322099/in/photostream

Dynamic programming

®m “Programming” as in tables, e.q., linear prog.
m Divide-and-conquer approach, but
Store and re-use solutions to sub-problems
® 3 implementation schemes:
Recursive top-down (inefficient)
Top-down with memoisation (save sub-results)
Bottom-up (solve smaller sub-problems first)

m Efficiency depends on:
Optimal substructure
Overlapping subproblems

Mo

TRINITY
WESTFRN

1 INIVERSITY CMPT231: dynamic programming 6 Nov 2012

Outline for today

m Dynamic programming for optimisation
Optimal substructure

Naive top-down
Top-down with memoisation

Bottom-up
m Examples:
Rod-cutting problem
Fibonacci
Matrix-chain multiplication
Shortest unweighted path
Optimal binary search trees

w2 TRINITY
A WESTERN
N LINIVERSITY

>

CMPT231: dynamic programming 6 Nov 2012

Rod-cutting problem

m Steel rods of length | can be sold for $p. each

m How to cut a single rod of length n into pieces
SO as to maximise revenue?

Assume cuts are free
me.qg., price table p=[1, 5, 8, 9]. Rod length n=4

Exhaustive search:
$9, $8+1, $1+8, $5+5,
$5+1+1, $1+5+1, $1+1+5, $1+1+1+1

+ Optimal: 2 pieces of length 2 =
+ CutRod(p, 4) =r, = $5+5

m Can we solve by reusing results of sub-problems?

Mo
i TRINITY
Y- \WWESTERN
T 1INMFRSITY

CMPT231: dynamic programming 6 Nov 2012

Optimal substructure

m Optimise one cut at a time, left to right

m Cut into two pieces, assume first piece won't be
cut again; recurse on second piece:

CutRod(p, n) = max (pli] + CutRod(p, n-i))

m Re-uses smaller subproblems many times
CutRod() with small n is called many times
m Optimal substructure means:

Task can be split into subproblems
which can be solved independently

The same subproblems show up in multiple
branches of recursion tree (overlapping work)

W TRIMNITY

“Ii- WESTFERN : :
S INERSITY CMPT231: dynamic programming 6 Nov 2012

l<i=<n

>

(1) Recursive top-down

®m Naive implementation of the recurrence above:

> def CutRod(p, n):
If (n<1): return O
q = -infinity
fori=1..n;:
q = max(q, pli] + CutRod(p, n-i))
return q

m Each iteration of loop makes recursive call
m Complexity? Recursion tree?

T(n) = 2" (Exercise 15.1-1)

Increasing input by 1 = double the run time!
m Why so bad? e.qg., CutRod(2) is run many times

»ha
oo TRINITY
Al WWESTERN
T LINIVERSITY

CMPT231: dynamic programming 6 Nov 2012

(2) Top-down with memoisation

® Memoisation: cache previously-computed results

> cache = array[0..n] of -infinity
> cache[0] =0
> def CutRod(p, n):

if cache[n] # -infinity:

return cachel[n]
foriinl..n:

cache[n] = max(cache[n], pli] + CutRod(p, n-i))
return cache[n]

m CutRod(n) is computed only once for each n

CutRod(n) takes ©(n) to compute if not cached
= Complexity is 2. ©(i) = O(n?)

»ha
TRINITY
WESTFRN

| INFERSITY CMPT231: dynamic programming

6 Nov 2012

(3) Bottom-up

m Start from smaller subproblems, caching as we go

> def CutRod(p, n):
cache = array[0..n] of -infinity
cache[0] =0
forj=1..n;:
fori=1..j:
cache[j] = max(cachel[j], pl 1]+ cache[|-1i]))
return cachel[n]

®m Non-recursive! (function calls are expensive)
® Doubly-nested for loop calculates each CutRod())

m Cache stores results of subproblems,
which each are re-used many times

= Complexity: 2, ©()) = ©(n?)

»ha
i TRINITY
Y- \WWESTERN
T LINIVERSITY

CMPT231: dynamic programming 6 Nov 2012

10

>

B INIVERSITY

Subproblem graph

m Nodes are subproblems (e.g., CutRod(n))

m Arrows indicate which other smaller subproblems
are needed to compute each node

Like recursion tree, but collapsing same nodes

m Bottom-up: order nodes so that all dependencies
are precomputed before we reach a node

m Top-down: depth-first search down to leaves
m Complexity often ©(#nodes + #arrows)

W TRIMNITY

“ WESTERN CMPT231: dynamic programming 6 Nov 2012

11

Outline for today

m Dynamic programming for optimisation
Optimal substructure

+ Naive top-down
+ Top-down with memoisation
+ Bottom-up

m Examples:
Rod-cutting problem
Fibonacci
Matrix-chain multiplication
Shortest unweighted path
Optimal binary search trees

w2 TRINITY
A WESTERN
N LINIVERSITY

>

CMPT231: dynamic programming 6 Nov 2012 12

Fibonacci sequence

mRecal: F, =F . +F _ mNaive top-down: (2"

— — def fib(n):
FO B Fl =1 if (n<2): return 1
t ib(n- ib(n-
m Closed form: ©(1) return fib(n-1) + fib(n-2)
def fib(n): _
return round(pow(phi, n)) - Bottom-up: O(n)
def fib(n):
c = array[0..n] of -1
m Top-down w/memo: ©(n) 1g[O] = | "L)| =gl
orj=2..n:

c = array[0..n] of -1

c[0] =c[l]=1

def fib(n):
if (c[n]>0): return c[n]
cln] = fib(n-1) + fib(n-2)
return c[n] m Subproblem graph?

cljl = clj-11 + clj-2]
return c[n]

TRINITY

i A N : :
“ IFEEIFFI;?FIW CMPT231: dynamic programming 6 Nov 2012

13

Matrix-chain multiplication

® Given a chain of n matrices (diff dims) to multiply:
(A)) (A) (A)) ... (A)

1 2 3

(Po X P1) (P X P3) (P, X P3) - (P X P)
#cols of left matrix = #rows of right matrix

®m Any parenthesisation is equivalent:
which is best to minimise number of operations?

me.g., (5x500) (500 x 2) (2 x 50);
Try (A,A)A_: 5%500%2 + 5*2*50 = 5500 ops
Try A (A A)): 500%2*50 + 5*500%50 = 175000

Exhaustive search of parentisisations: ©(2")

»ha

TRINITY
= \WECTERN
= LINIVFRSITY

CMPT231: dynamic programming 6 Nov 2012 14

Optimal substructure

m As with rod-cutting, consider one split at a time:

Cost if split chain I..] at k:
Cost(i .. k) + Cost(k+1 .. j) + (pi_l)(pk)(pj)

Cost of the matrix mult at the splitis p,, p, p,

m Naive recursive solution:

> def MatChain(p, i, j):
if (i ==]): return O
return min(foreach(k ini .. j-1:
MatChain(p, i, k) + MatChain(p, k+1, j)
+ pli-1]* plk] * pljl))

m 2n recursive calls; very inefficient! ©(2")

m Smaller chains are computed repeatedly

: #t‘ TRINITY

“§i \WFCTFRN ' .
= 1 INIFRSITY CMPT231: dynamic programming 6 Nov 2012

15

Bottom-up solution

m Nodes are indexed by both start (i) and end (j)
= 2D grid of nodes, instead of 1D line

def MatChain(p):
n = length(p) - 1 7
m = array[1l .. n][1 .. n] of O
s = array[l .. n-1][2 .. n] o
forlen =2 .. n: |
fori=1..n-len+ 1:

j=i+len-1 Iep=.4, i=2:
m(i, j] = infinity min is @k=3: m[2,3]+m[4,5]+35*5*20
fork =i.. j-1:
q = mli, k] + m[k+1, j] + pli-1] * plk] * plj]
if g < mli, jl:
mli, jl = q
s[i, j] =k
| TRINITY
:Tﬁ};ﬁ;ﬁdw CMPT231: dynamic programming 6 Nov 2012 16

Outline for today

m Dynamic programming for optimisation
Optimal substructure

+ Naive top-down
¢+ Top-down with memoisation
+ Bottom-up

m Examples:
Rod-cutting problem
Fibonacci
Matrix-chain multiplication
Shortest unweighted path
Optimal binary search trees

w2 TRINITY
A WESTERN
N LINIVERSITY

>

CMPT231: dynamic programming 6 Nov 2012 17

Shortest- and longest-path

® Given a set of nodes and (unweighted) edges,
find the shortest path between given nodes u, v:

Optimal substructure: if split path at node w,
then we can form the shortest pathu - w —» v
from the shortest paths u - wand w = v

So we can solve with dynamic programming
m What about longest (non-cyclic) path u — v?

Just gluing together Longest(u — w) and
Longest(w — v) won't work!

Might not be longest u = v
Might have loops

s TRINITY

WESTFRN
1L INIVFRSITY

CMPT231: dynamic programming 6 Nov 2012 18

Optimal binary search trees

m BST operations ©(h): depth of node in tree

m Given sorted set of keys K= [k, ..., k]
and probabilities P = [p,, ..., p_l:

Minimise expected (weighted avg) search cost

® To handle unsuccessful searches,
add dummy keys d, ..., d_as leaves:

K.)

Dummy key d is for all values between (k ., k

Let g = probability of d: then 2p + 2q =1

m Expected search cost =
2 (h(k) + 1)p, + Z (h(d) + 1)q,

i i
R

o TRINITY

Y- \WESTERN _ : :
T LINIVERSITY CMPT231: dynamic programming 6 Nov 2012 19

Optimal substructure

m As before, consider one split at a time:
“Split” = choice of root
To find optimal BST for keys k, ..., k,

J
+ Consider making k_the root (i = r =)

+ Find optimal BST for left subtree k,, ..., K
+ Find optimal BST for right subtree k_ , ..., k

J

r-1

® Demoting a subtree increases depth to each of its
nodes by 1: = Increases expected search cost by

w(j) =2 _Jp,+ 2 _.4d,
mCoste(i,j))=min_J[e(i, r-1) + e(r+1,) + w(i, J)]

pr)
w2 TRINITY
A MAESTER M

= 1 INNFRSITY

CMPT231: dynamic programming 6 Nov 2012

20

Optimal BST: example

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

