ch16: Greedy Algorithms

20 Nov 2012 CMPT231 Dr. Sean Ho Trinity Western University

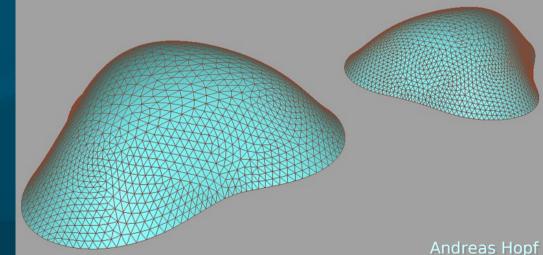
Outline for today

- Greedy algorithms
 - Activity selection
 - Fractional knapsack problem
 - Huffman coding
- Intro to graph algorithms
 - Breadth-first search
- Review ch10,12,18,15

Greedy algorithms

- Another approach to optimisation
 - Faster than dynamic programming, when applicable
- At each decision point, go for immediate gains
 - Locally optimal choices ⇒ global optimum
- Not all problems have optimal substructure
 - Hybrid optimisation strategies use large jumps

to get to right "hill", then greedy "hill-climbing" to get to the top



Problem-solving outline

- Find optimal substructure (e.g., recurrence)
- Convert to naïve recursive solution (code)
 - Could then be converted to dynamic prog.
- Use greedy choice to simplify the recurrence so only one subproblem remains
 - Don't have to iterate through all subproblems
 - Prove greedy choice yields global optimum!
- Convert to recursive greedy solution
- Convert to iterative greedy solution

Example: activity selection

- Activities S = {a₁, ..., a_n} which each require exclusive use of a shared resource
 - Each activity has start/finish times [s, f)
 - Activities are sorted by finish times
- ⇒ Find largest subset of S where

all activities are non-overlapping

e.g., a₂ and a₅do not overlap:

Solutions?

S

8

10

3

5

6

Solving: optimal substructure

- Let $S_{ij} = \{a_k \in S: f_i \le s_k < f_k \le s_j\}$: all activities that start after f_i and finish before s_j
 - Any activity in S_{ii} will be compatible with:
 - Any activity that finishes by f
 - Any activity that starts no earlier than s
- Let A_{ij} be a solution for S_{ij}:

 a largest mutually-compatible subset of activities
- Pick an activity $a_k \in A_{ij}$, and partition A_{ij} into
 - $A_{ik} = A_{ii} \cap S_{ik}$: those that finish before a_k starts
 - $\bullet A_{kj} = A_{ij} \cap S_{kj}$: those that start after a_k finishes

Proof of optimal substructure

- Claim: A_{ik} and A_{kj} are optimal solutions for S_{ik} , S_{kj}
- Proof (for A_{ik}): assume not:

- Let A'_{ik} be a better solution: non-overlapping elements, and $|A'_{ik}| > |A_{ik}|$.
- Then $A'_{ik} \cup \{a_k\} \cup A_{kj}$ would be a solution for S_{ij} , and its size is larger than $A_{ii} = A_{ik} \cup \{a_k\} \cup A_{kj}$.
- Contradicts the premise that A_{ii} was optimal.
- Optimal substructure: split on a_k,
 recurse twice on S_{ik} and S_{kj},
 iterate over all choices of a_k and pick the best

Naive recursive solution

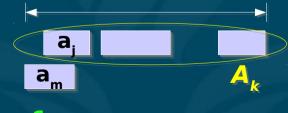
- Let c[i,j] = size of optimal solution for S_{ij} :
 - Splitting on a_k yields c[i,j] = c[i,k] + 1 + c[k,j]
 - Which choice of a_k is best? Naive: try all
- Recurrence: $c[i,j] = \max_{a_k \in S_i j} (c[i,k] + 1 + c[k,j])$
 - Base case: if $S_{ij} = \emptyset$, then c[i,j] = 0
- Could implement this using dynamic programming
 - Fill in 2D table for c[i,j], bottom-up
 - Auxiliary table storing the solutions A_{ij}
- With this problem, though, we can do better!

Greedy choice

- Which choice of a_k leaves as much as possible of the resource available for other activities?
 - One which finishes the earliest
 - Since activities are sorted by finish time, just choose the first activity!
- Recurrence simplifies: to find optimal subset of S_{kj}, include a_k, then recurse on
 - $S_k = \{a_i : s_i \ge f_k\}$: those that start after a_k finishes
 - Don't need to iterate over all choices of a
- We need to prove the greedy choice is optimal

Proof of greedy choice

- Let $\frac{S_k}{K} \neq \emptyset$ with $\frac{S_k}{K} \in S_k$ having earliest finish time.
 - Claim: \exists optimal soln for S_k which includes a_m .
- Proof: Let A_k be an optimal solution for S_k .
 - If it includes a_m, then we're done.
- If not, let a be the first in A to finish.
 - Swap out a_m for a_j : let $A'_k = A_k \{a_j\} \cup \{a_m\}$.
- Then A' is an optimal solution for S_k:
 - Size is same as A, and
 - Elements are non-overlapping: f_m ≤ f_j



Recursive greedy solution

- Input: arrays s[], f[], with f[] sorted
 - Add a dummy entry f[0] = 0, so that $S_0 = S$.
- For each recursive subproblem S_k,
 - Skip over activities that overlap with a_k
 - Include the first activity that doesn't overlap, and recurse on the rest:

```
→ def ActivitySel(s, f, k, n):
```

```
for m in k+1 .. n:
```

- if (s[m] ≥ f[k]):
 - return {a_m} U ActivitySel(s, f, m, n)
- return NULL
- Initial call: ActivitySel(s, f, 0, n). ($\Theta(n)$!)

Iterative greedy solution

Recursive solution is nearly tail-recursive, easy to convert to more efficient iterative solution:

```
→ def ActivitySel(s, f):
```

```
• A = \{a_1\}
```

•
$$k = 1$$

- for m in 2 .. length(f):
 - if (s[m] ≥ f[k]):

•
$$k = m$$

- return A
- Complexity: Θ(n)

ij	S	f		
1	1	3		
2	2	5		
3	4	7		
4	1	8		
5	5	9		
6	8	10		
7	9	11		
8	11	14		
9	13	16		

If need to pre-sort on f[], then Θ(n lg n)

Greedy vs dynamic prog.

- Dynamic prog. more general
 - Not all problems have greedy property
- Dynamic prog. fills in table bottom-up
 - Greedy choice done top-down
- Choice in dyn. prog. needs all smaller subprobs
 - Greedy choice is simpler, so can make choice before solving subproblem
- Proving the greedy property:
 - Assume an optimal solution
 - Modify it to include the greedy choice
 - Show that it's still optimal

Optimising for greedy choice

- Often need to pre-process input to make the greedy choice easier
 - Sorted activities by finish time
 - Greedy choice can be done in O(1) each time
 - Sorting takes O(n lg n)
- If input is dynamically generated (can't sort whole list in advance), then
 - Priority queue: pop the most optimal choice

Outline for today

- Greedy algorithms
 - Activity selection
 - Fractional knapsack problem
 - Huffman coding
- Intro to graph algorithms
 - Breadth-first search
- Review ch10,12,18,15

Knapsack problem

Fractional knapsack problem:

- item 2 50

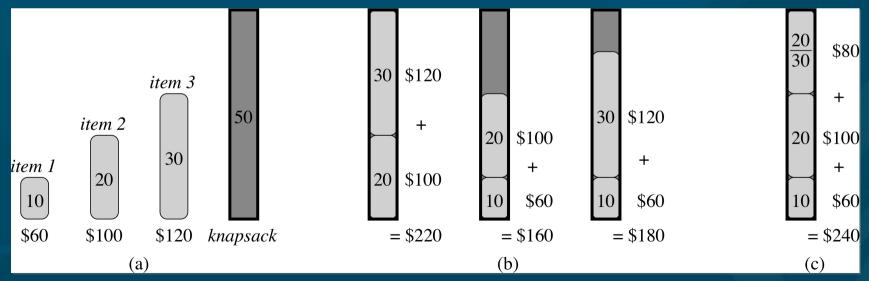
 item 1 20 30

 \$60 \$100 \$120 knapsack
- n items, each with weight w and value v.
- Maximise total value, subject to total weight W
- Can take fractions of an item (think of liquids)
- Greedy soln: sort items by value-to-weight ratio
 - Greedy choice: take item with largest v_i / w_i.
 - Last spot may be filled with fractional item
 - → def FractionalKnapsack(v, w, W):
 - while totwt < W:
 - add next item in decreasing order of value-to-weight
 - replace last item with 1-(totwt-W) of itself

\$80

0-1 Knapsack

- Variant that does not allow fractions of an item
- Greedy strategy no longer works!
- Making initial locally-optimal choices locks us out of making later globally-optimal choices
- Still possible to solve using dynamic programming (Ex 16.2-2)



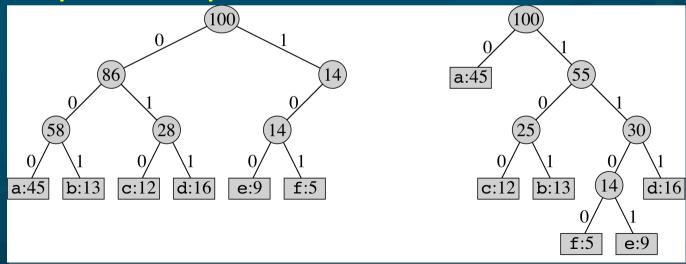
Encoding

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- Given a text with a known set of characters
 - Encode each character with a binary codeword
- Fixed-length code: all codewords same length
 - "cafe" ⇒ 010 000 101 100
- Variable-length code: some codes lower cost
 - "cafe" ⇒ 100 0 1100 1101
 - Compression: choose shorter codes for more frequent characters
- Prefix code: no code is a prefix of another
 - Unique parsing; don't need to delimit chars
 - "cafe" \Rightarrow 100011001101

Code trees

- Prefix code ⇒ code tree: binary tree where nodes represent prefixes; characters are at leaves
 - Fixed-length code ⇒ leaves all at same level
 - Decoding = walk down the tree
 - Cost of a char = depth in tree
- Total cost of encoding a file using a given tree:
 - $\bullet \Sigma_c$ [freq(c) * depth(c)]



Huffman coding

- Build tree bottom-up
 - Start with two least-common chars
 - Merge to make new subtree with combined freq
- Min-priority queue manages the greedy choice
- Input: array of char nodes with .freq attribs
 - → def huffman(chars):
 - Q = new MinQueue(chars)
 - for i in 1 .. length(chars)-1:
 - z = new Node
 - z.left = Q.popmin()
 - z.right = Q.popmin()
 - z.freq = z.left.freq + z.right.freq
 - Q.push(z)
 - return Q.popmin()

char	freq		
a	1 5		
b	5		
C	9		
d	7		
e	18		
f	10		

Outline for today

- Greedy algorithms
 - Activity selection
 - Fractional knapsack problem
 - Huffman coding
- Intro to graph algorithms
 - Breadth-first search
- Review ch10,12,18,15

Intro to graph algorithms

- Representing graphs: G = (V, E)
 - V: vertices/nodes (e.g., via array or linked-list)
 - E: edges connecting vertices (directed or un)
- Representing edges:
 - Edge list: array/list of (u,v) pairs of nodes
 - Adjacency list: indexed by start node
 - What about undirected graphs?
 - How to find (out)-degree of every vertex?
 - Adjacency matrix: A[i,j]=1 if (i,j) is an edge
 - What about undirected graphs?
 - Weighted graph: A[i,j] not limited to 0/1

Graph traversal: breadth-first

- Goal: touch all nodes in the graph exactly once
 - Overlays a breadth-first tree rooted at start
 - Path in the tree = shortest path in graph
- Graph ≠ tree: could have loops
 - Need to track which nodes we've seen
- Assign colour: white = unvisited, grey = on border (some unvisited neighbours), black = no unvisited neighbours
- Use FIFO queue to manage grey nodes

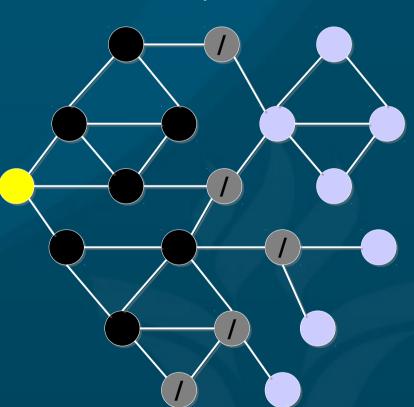
Breadth-first search algorithm

- Input: vertex list, adjacency list (linked lists), start
- Output: modify vertex list to add parent pointers
 - → def BFS(V, E, start):

v -

E

- initialise all vertices to be white, with NULL parent
- initialise start to be grey
- initialise FIFO: Q.push(start)
- while Q.notempty():
 - u = Q.pop()
 - for each v in E.adj[u]:
 - if v.colour == white:
 - v.colour = grey
 - v.parent = u
 - Q.push(v)
 - u.colour = black
- Complexity: O(V + E)



Outline for today

- Greedy algorithms
 - Activity selection
 - Fractional knapsack problem
 - Huffman coding
- Intro to graph algorithms
 - Breadth-first search
- Review ch10,12,18,15

Review for midterm 3

- ch10: Linked-lists (dbl, circ), stacks/queues
 - Implementation and complexity
- ch12: Trees (terms, expression trees)
 - BSTs (traversal, search, insert, del)
- ch18: B-trees (motivation, design, variants B*, B+)
 - Operations: search, insert, del
 - Complexity analysis: CPU and disk
- ch15: Dynamic programming
 - Optimal substructure ⇒ bottom-up solution
 - Rod-cutting, Fib, matrix-chain, optimal wt BST

