
ch22: Graph Algorithmsch22: Graph Algorithms

4 Dec 2012
CMPT231
Dr. Sean Ho
Trinity Western University



4 Dec 2012CMPT231: graph algorithms 2CMPT231: graph algorithmsCMPT231: graph algorithms

Outline for todayOutline for today

 Depth-first search
● Parenthesis structure
● Edge classification
● Topological sort
● Finding strongly-connected components

 Semester overview



4 Dec 2012CMPT231: graph algorithms 3CMPT231: graph algorithmsCMPT231: graph algorithms

Breadth-first search algorithmBreadth-first search algorithm

 Input: vertex list, adjacency list (linked lists), start
 Output: modify vertex list to add parent pointers

➔ def BFS(V, E, start):
● initialise all vertices to be white, with NULL parent
● initialise start to be grey
● initialise FIFO: Q.push(start)
● while Q.notempty():

● u = Q.pop()
● for each v in E.adj[u]:

● if v.colour == white:
● v.colour = grey
● v.parent = u
● Q.push(v)

● u.colour = black

 Complexity: O(V + E)

//

//

//

//

//

VV

EE



4 Dec 2012CMPT231: graph algorithms 4CMPT231: graph algorithmsCMPT231: graph algorithms

Depth-first searchDepth-first search

 Explore as deep as we can go
● Backtrack to explore other paths
● Recursive algorithm

 Colouring: white = undiscovered
● Grey = discovered
● Black = finished (visited all neighbours)

 Add timestamps on discover and finish
 Overlays a forest on the graph

● Subtree at a node = nodes visited between this 
node's discovery and finish



4 Dec 2012CMPT231: graph algorithms 5CMPT231: graph algorithmsCMPT231: graph algorithms

DFS algorithmDFS algorithm
➔ def DFS(G):

● initialise all vertices to be white, with NULL parent
● time = 0
● for u in vertices:

● if u is white: DFS-Visit(G, u)
➔ def DFS-Visit(G,u):

● time++
● u.discovered = time
● u.colour = gray
● for v in u's neighbours:

● if v is white:
● v.parent = u
● DFS-Visit(G, v)

● u.colour = black
● time++
● u.finished = time

1/1/ 6/6/

2/52/5 //

3/43/4 //

startstart
curcur

why not just call DFS-Visit once?why not just call DFS-Visit once?

uu

vv

ww

xx

yy

zz



4 Dec 2012CMPT231: graph algorithms 6CMPT231: graph algorithmsCMPT231: graph algorithms

Parenthesis structureParenthesis structure

 Subtree at a node is visited between the node's 
discovery and finish times

 Print a “(u” when we discover a node u,
and “)u” when we finish it:

● Output will be a valid parenthesisation

● e.g., (u (v (w )w )v (x (y )y )x )u (z )z

● but not: (u (v )u )v

 The (discover, finish) intervals
for two vertices are either:
● Completely disjoint, or
● One contained in the other

1/101/10 6/96/9

2/52/5 7/87/8

3/43/4 11/1211/12

xx

yy

zz

uu

vv

ww



4 Dec 2012CMPT231: graph algorithms 7CMPT231: graph algorithmsCMPT231: graph algorithms

Edge classificationEdge classification

 Edges in a graph are either:
● Tree edges: in the DFS forest
● Back edges: from a node to an ancestor in the 

same DFS tree (including self-loop)
● Forward edges: from a node to a descendant
● Cross edges: between nodes in different 

subtrees or different DFS trees

Lemma (22.11):
For directed graphs,
acyclic ⟺ no back edges

Lemma (22.11):
For directed graphs,
acyclic ⟺ no back edges



4 Dec 2012CMPT231: graph algorithms 8CMPT231: graph algorithmsCMPT231: graph algorithms

Topological sortTopological sort

 Linear ordering of vertices such that
if u → v is an edge, then u comes before v in sort
● Assumes no cycles! (DAG: directed acyclic)
● Applications: dependency resolution,

compiling files, task planning / Gannt chart
 Tweak DFS: as each vertex is finished,

insert it at the head of a linked list
 e.g.: z, u, x, y, v, w
 DFS might not be unique,

so topo sort might not be unique

1/101/10 6/96/9

2/52/5 7/87/8

3/43/4 11/1211/12

xx

yy

zz

uu

vv

ww



4 Dec 2012CMPT231: graph algorithms 9CMPT231: graph algorithmsCMPT231: graph algorithms

Strongly-connected componentStrongly-connected component

 Largest completely-connected set of vertices:
● Every vertex in the component has a path

to every other vertex in the component

 Algorithm:
● Compute DFS(G) to find finishing times
● Let GT (transpose) be G with all edges reversed
● Compute DFS(GT) but iterate over neighbours in 

decreasing order of finishing time from step 1
● ⇒ Each tree in DFS(GT) is a separate component



4 Dec 2012CMPT231: graph algorithms 10CMPT231: graph algorithmsCMPT231: graph algorithms

Outline for todayOutline for today

 Depth-first search
● Parenthesis structure
● Edge classification
● Topological sort
● Finding strongly-connected components

 Semester overview



4 Dec 2012CMPT231: graph algorithms 11CMPT231: graph algorithmsCMPT231: graph algorithms

Semester overviewSemester overview

 ch1-4: Intro/definitions
(complexity, recurrences, divide-conquer)

 ch6-8,11: Sorting
comparison sorts (insertion, merge, heap, quick)
linear sorts (counting, radix, bucket), hash tables

 ch10,12,18: Data Structures
(linked lists, stacks/queues, trees, BST, B-trees)

 ch15,16: Algorithms
(dynamic programming, greedy)

 ch22: Graph algorithms
(BFS, DFS, topo sort, components)



25 Sep 2012CMPT231: heapsort & quicksort 12CMPT231: heapsort & quicksortCMPT231: heapsort & quicksort

Exam1: ch1-4Exam1: ch1-4

 Algorith. complexity: Θ(=), O(≤), Ω(≥), o(<), ω(>)
 Know their technical definitions!
 Proofs!

 Solving recurrences: induction, master method

 Algorithms to be familiar with:
● Insertion sort, bubble, merge, max subarray
● Matrix multiply (3 algorithms!)



23 Oct 2012CMPT231: B-trees, review 13CMPT231: B-trees, reviewCMPT231: B-trees, review

Exam2: ch6, 7Exam2: ch6, 7

 Hand-simulation, complexity analysis
● “What if?” questions: tweaks to std algorithms

 Ch6: Heapsort
● Trees
● Max heaps: max-heap property, heapify()
● Heapsort: building a heap, using it for sorting
● Priority queue: ops, complexity

 Ch7: Quicksort
● Naive quicksort with fixed pivot
● Randomised pivot
● Complexity analysis: expected running time E[]



23 Oct 2012CMPT231: B-trees, review 14CMPT231: B-trees, reviewCMPT231: B-trees, review

Exam2: ch8, 11Exam2: ch8, 11

 Ch8: Linear-time sorts (assumptions!)
● Decision tree model, why Ω(n lg n) comparisons
● Counting sort (census + move): Θ(n + k)
● Radix sort (with r-bit digits): Θ(d(n + k))
● Bucket sort: Θ(n) expected time

 Ch11: Hash tables
● Hash function, hash collisions, chaining
● Load factor α = n/(# buckets), search in Θ(1+α)
● Hashes: div, mul, universal hashing
● Open addressing: linear, quad, double-hash



20 Nov 2012CMPT231: greedy algorithms 15CMPT231: greedy algorithmsCMPT231: greedy algorithms

Exam3: ch10, 12, 18, 15Exam3: ch10, 12, 18, 15

 ch10: Linked-lists (dbl, circ), stacks/queues
● Implementation and complexity

 ch12: Trees (terms, expression trees)
● BSTs (traversal, search, insert, del)

 ch18: B-trees (motivation, design, variants B*, B+)
● Operations: search, insert, del
● Complexity analysis: CPU and disk

 ch15: Dynamic programming
● Optimal substructure ⇒ bottom-up solution
● Rod-cutting, Fib, matrix-chain, optimal wt BST



20 Nov 2012CMPT231: greedy algorithms 16CMPT231: greedy algorithmsCMPT231: greedy algorithms

Last chapters: ch16, 22Last chapters: ch16, 22

 ch16: Greedy algorithms
● Activity selection
● Fractional knapsack problem
● Huffman coding

 ch22: Graph algorithms
● Breadth-first search
● Depth-first search

 Edge types, finding cycles

● Topological sort
● Finding strongly-connected components


	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

