Exploring Data

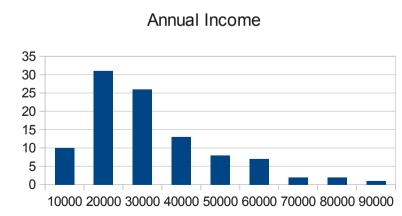
17 Jan 2012 Dr. Sean Ho

busi275.seanho.com

 HW1 due Thu 10pm
 By Mon, send email to set proposal meeting

 For lecture, please download: 01-SportsShoes.xls

Outline for today


Charts • Histogram, ogive Scatterplot, line chart Descriptives: Centres: mean, median, mode • Quantiles: quartiles, percentiles Boxplot Variation: SD, IQR CV, empirical rule, z-scores Probability Venn diagrams Union, intersection, complement **BUSI275: exploring data**

17 Jan 2012

Quantitative vars: histograms

For quantitative vars (scale, ratio), must group data into classes

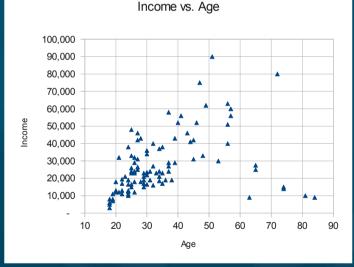
- e.g., length: 0-10cm, 10-20cm, 20-30cm... (class width is 10cm)
- Specify class boundaries: 10, 20, 30, …
- How many classes? for sample size of n, use k classes, where 2^k ≥ n
- Can use FREQUENCY() w/ column chart, or
 Data > Data Analysis
 - > Histogram

Cumulative distrib.: ogive

The ogive is a curve showing the cumulative distribution on a variable: Annual Income: Ogive Frequency of values 100% 90% equal to or less than 80% 70% a given value 60% 50% Compute cumul. freqs. 40% 30% 20% Insert > Line w/Markers 10% 0% 10000 30000 50000 70000

 Pareto chart is an ogive on a nominal var, with bins sorted by decreasing frequency
 Sort > Sort by: freq > Order: Large to small

2 quant. vars: scatterplot


Each participant in the dataset is plotted as a point on a 2D graph

 (x,y) coordinates are that participant's observed values on the two variables

Insert > XY Scatter

If more than 2 vars, then either

- 3D scatter (hard to see), or
- Match up all pairs: matrix scatter

Time series: line graph

Think of time as another variable
 Horizontal axis is time
 Insert > Line > Line

Outline for today

Charts

- Histogram, ogive
- Scatterplot, line chart

Descriptives:

- Centres: mean, median, mode
- Quantiles: quartiles, percentiles
 - Boxplot
- Variation: SD, IQR
 - CV, empirical rule, z-scores

Probability

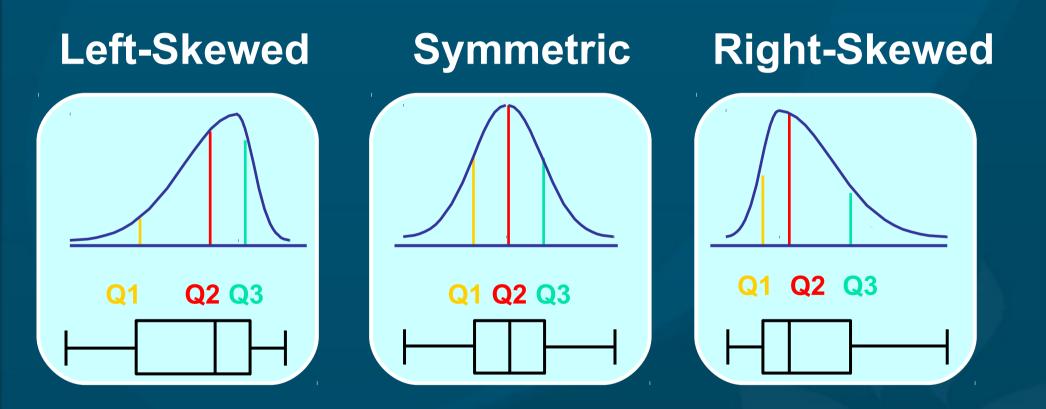
- Venn diagrams
- Union, intersection, complement

Descriptives: centres

S	Statistic	Age	Income
Ν	<i>l</i> lean	34.71	\$27,635.00
Ν	/ledian	30	\$23,250.00
Ν	/lode	24	\$19,000.00

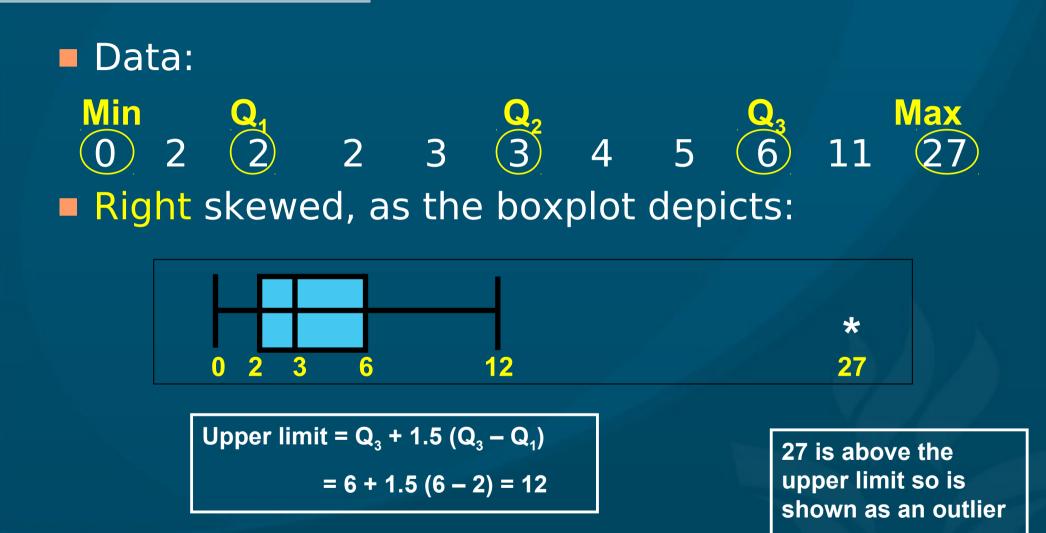
Visualizations are good, but numbers also help: • Mostly just for quantitative vars Many ways to find the "centre" of a distribution Mean: AVERAGE() • Pop mean: μ ; sample mean: x • What happens if we have outliers? Median: line up all observations in order and pick the middle one • Mode: most frequently occurring value Usually not for continuous variables

Descriptives: quantiles


The first quartile, Q_1 , is the value $\frac{1}{4}$ of the way through the list of observations, in order Similarly, Q₂ is ³/₄ of the way through What's another name for Q₂? In general the pth percentile is the value p% of the way through the list of observations • Rank = (p/100)n: if fractional, round up If exactly integer, average the next two Median = which percentile? Excel: QUARTILE(data, 3), PERCENTILE(data, .70)

Box (and whiskers) plot

Plot: median, Q₁, Q₃, and upper/lower limits: • Upper limit = $Q_3 + 1.5(IQR)$ • Lower limit = $Q_1 - 1.5(IQR)$ \blacksquare IQR = interquartile range = (Q₃ - Q₁) Observations outside the limits are considered outliers: draw as asterisks (*) 25% 25% 25% 25% * * **Outliers** Lower lim Q1 **Q3 Upper lim** Median

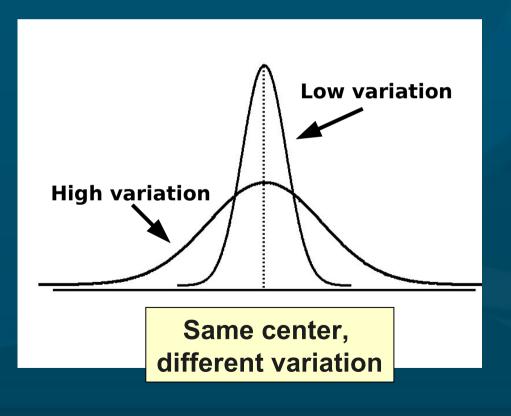

Excel: try tweaking bar charts

Boxplots and skew

Boxplot Example

Outline for today

Charts


- Histogram, ogive
- Scatterplot, line chart
- Descriptives:
 - Centres: mean, median, mode
 - Quantiles: quartiles, percentiles
 - Boxplot
 - Variation: SD, IQR
 - CV, empirical rule, z-scores

Probability

- Venn diagrams
- Union, intersection, complement

Measures of variation

Spread (dispersion) of a distribution: are the data all clustered around the centre, or spread all over a wide range?

Range, IQR, standard deviation

Simplest: range = max - min

Is this robust to outliers?

IQR = Q₃ - Q₁ ("too robust"?)

Standard deviation:

Population: $\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$ Sample: $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$

	Pop.	Samp.
Mean	μ	x
SD	σ	S

In Excel: STDEV()
 Variance is the SD w/o square root

Coefficient of variation

Coefficient of variation: SD relative to mean

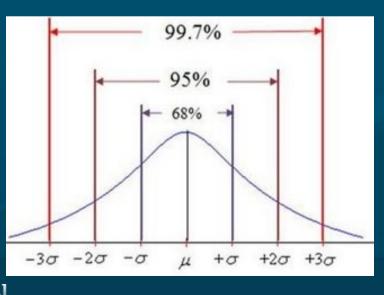
Expressed as a percentage / fraction

e.g., Stock A has avg price x=\$50 and s=\$5

CV = s / x = 5/50 = 10% variation

Stock B has x=\$100 same standard deviation

CV = s / x = 5/100 = 5% variation


Stock B is less variable relative to its average stock price

SD and Empirical Rule

Every distribution has a mean and SD, but for most "nice" distribs two rules of thumb hold:
 Empirical rule: for "nice" distribs, approximately
 68% of data lie within ±1 SD of the mean
 95% within ±2 SD of the mean

• 99.7% within ±3 SD

SD and **Tchebysheff's** Theorem

For any distribution, at least (1-1/k²) of the data will lie within k standard deviations of the mean

- Within $(\mu \pm 1\sigma): \ge (1-1/1^2) = 0\%$
- Within $(\mu \pm 2\sigma)$: $\geq (1-1/2^2) = 75\%$
- Within $(\mu \pm 3\sigma)$: $\geq (1-1/3^2) = 89\%$

Describes a value's position relative to the mean, in units of standard deviations:

• $z = (x - \mu)/\sigma$

 e.g., you got a score of 35 on a test: is this good or bad? Depends on the mean, SD:
 μ=30, σ=10: then z = +0.5: pretty good
 μ=50, σ=5: then z = -3: really bad!

Outline for today

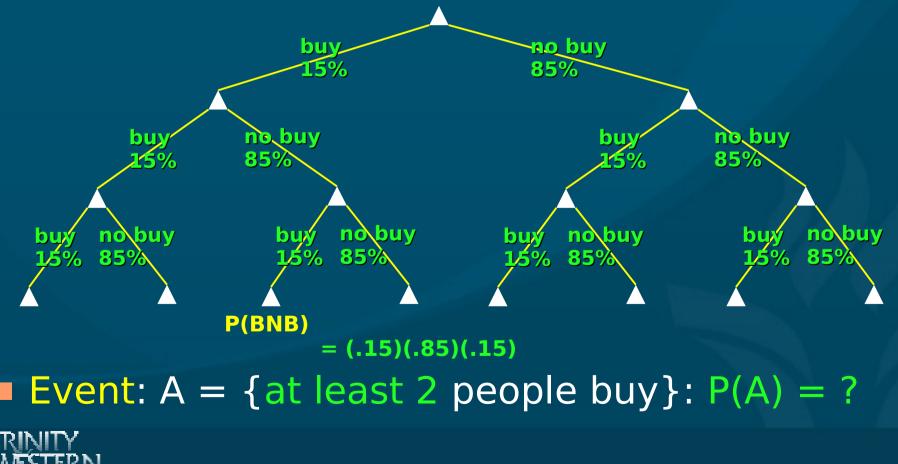
Charts

- Histogram, ogive
- Scatterplot, line chart
- Descriptives:
 - Centres: mean, median, mode
 - Quantiles: quartiles, percentiles
 - Boxplot
 - Variation: SD, IQR
 - CV, empirical rule, z-scores

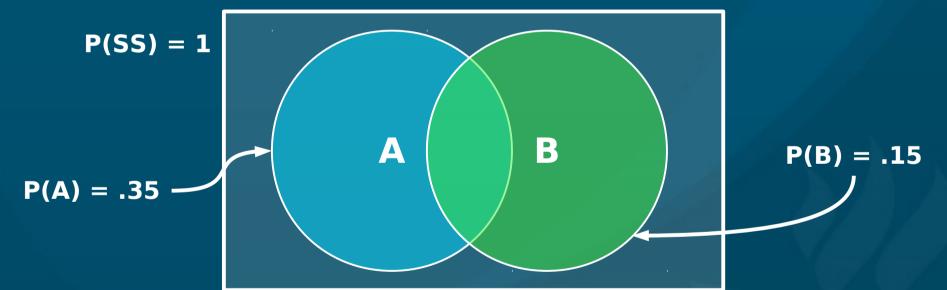
Probability

- Venn diagrams
- Union, intersection, complement

Probability


 Chance of a particular event happening
 e.g., in a sample of 1000 people, say 150 will buy your product:

- → the probability that a random person from the sample will buy your product is 15%
- Experiment: pick a random person (1 trial)
- Possible outcomes: {"buy", "no buy"}
- Sample space: {"buy", "no buy"}
- Event of interest: A = {"buy"}
- P(A) = 15%

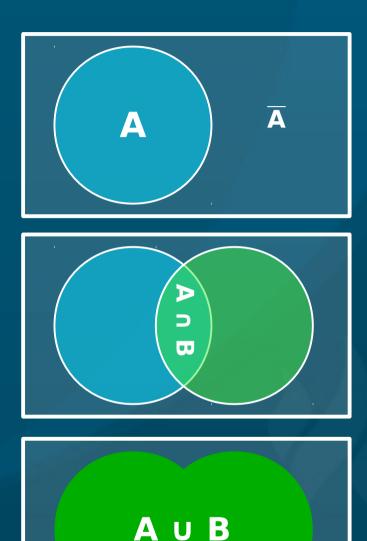

Event trees

Experiment: pick 3 people from the group
 Outcomes for a single trial: {"buy", "no buy"}
 Sample space: {BBB, BBN, BNB, BNN, NBB, ...}

Venn diagrams

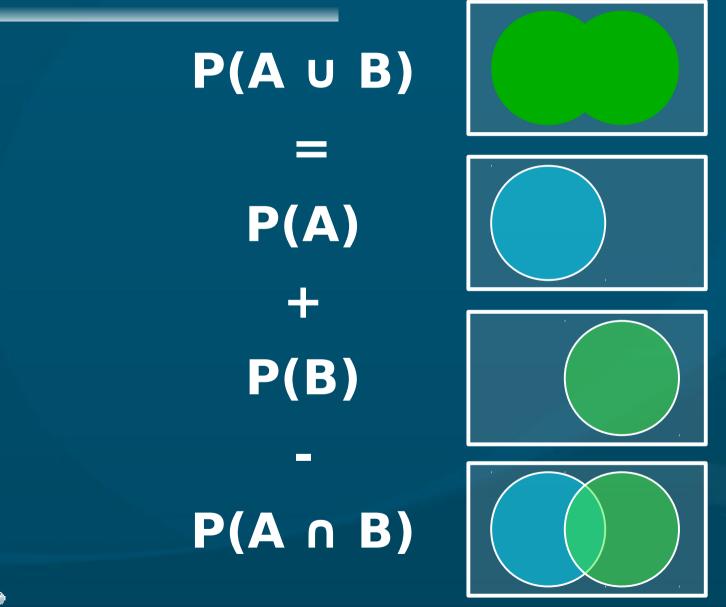
Box represents whole sample space
Circles represent events (subsets) within SS
e.g., for a single trial:

A = "clicks on ad" B = "buys product"


Venn: set theory

Complement: A

 "does not click ad"
 P(A) = 1 - P(A)


Intersection: A ∩ B = "clicks ad and buys"

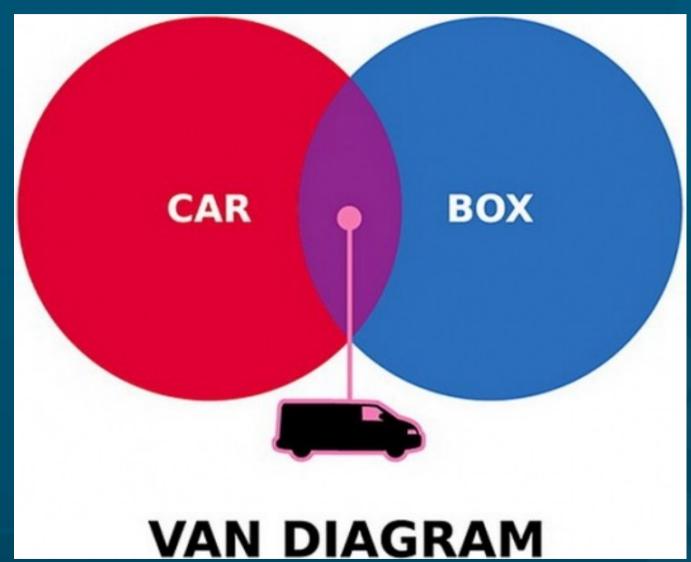
Union: A u B = "either clicks ad or buys"

Addition rule: A U B

Addition rule: example

35% of the focus group clicks on ad: • P(?) = .3515% of the group buys product: • P(?) = .1545% are "engaged" with the company: either click ad or buy product: • P(?) = .45 \Rightarrow What fraction of the focus group buys the product through the ad? • $P(A \cup B) = P(A) + P(B) - P(A \cap B)$? = ? + ? - ?

Mutual exclusivity


Two events A and B are mutually exclusive if the intersection is null: $P(A \cap B) = 0$

- i.e., an outcome cannot satisfy both A and B simultaneously
- e.g., A = male, B = female
- e.g., A = born in Alberta, B = born in BC

If A and B are mutually exclusive, then the addition rule simplifies to:
 P(A ∪ B) = P(A) + P(B)

HW1 (ch1-2): due online, this Thu 19 an Text document: well-formatted, complete **English** sentences • Excel file with your work, also well-formatted • HWs are to be individual work Get to know your classmates and form teams Email me when you know your team Discuss topics/DVs for your project • Find existing data, or gather your own? Schedule proposal meeting during 23Jan - 3Feb

