Ch5-6: Common Probability Distributions

31 Jan 2012 Dr. Sean Ho

busi275.seanho.com

HW3 due Thu 10pm
Dataset description due next Tue 7Feb

Outline for today

Discrete probability distributions

- Finding μ and σ
- Binomial experiments: BINOMDIST()
- Poisson distribution: POISSON()
- Hypergeometric: HYPGEOMDIST()
- Continuous probability distributions
 - Normal distribution: NORMDIST()
 - Cumulative normal
 - Continuity correction
 - Standard normal
 - Uniform distribution
 - Exponential distribution: EXPONDIST()

Discrete probability distribs

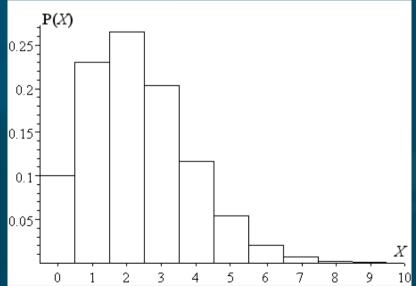
A random variable takes on numeric values
 Discrete if the possible values can be counted, e.g., {0, 1, 2, ...} or {0.5, 1, 1.5}
 Continuous if precision is limited only by our

instruments

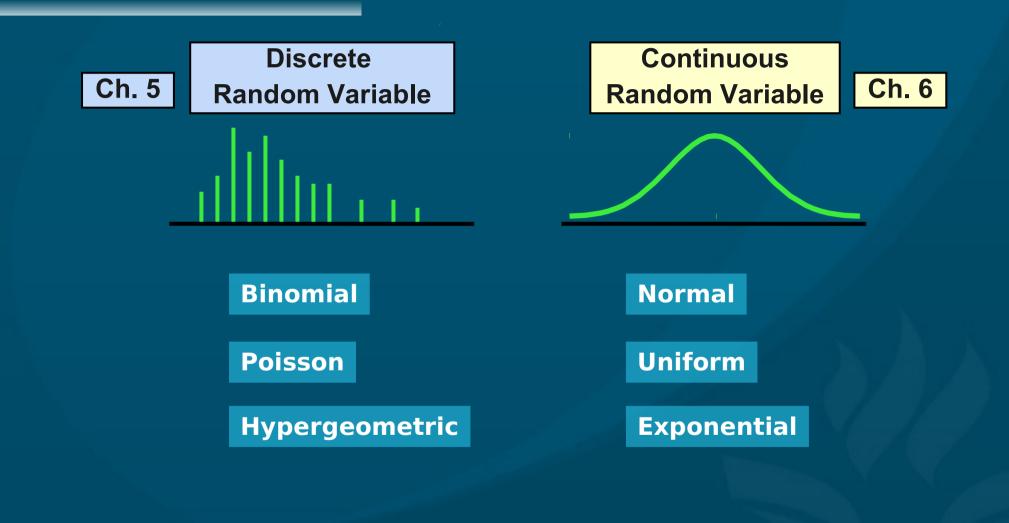
- Discrete probability distribution: for each possible value X, list its probability P(X)
 - Frequency table, or
 - Histogram

Probabilities must add to 1

• Also, all $P(X) \ge 0$



Probability distributions



BUSI275: probability distributions

31 Jan 2012

Mean and SD of discrete distr.

Given a discrete probability distribution P(X),
 Calculate mean as weighted average of values:

$$\mu = \sum_{X} X P(X)$$

■ E.g., # of email addresses: 0% have 0 addrs; 30% have 1; 40% have 2; 3:20%; P(4)=10%
 ■ µ = 1*.30 + 2*.40 + 3*.20 + 4*.10 = 2.1
 ■ Standard deviation:

$$\sigma = \sqrt{\sum_{X} (X - \mu)^2 P(X)}$$

BUSI275: probability distributions

31 Jan 2012

Outline for today

Discrete probability distributions

- Finding μ and σ
- Binomial experiments: BINOMDIST()
- Poisson distribution: POISSON()
- Hypergeometric: HYPGEOMDIST()

Continuous probability distributions

- Normal distribution: NORMDIST()
 - Cumulative normal
 - Continuity correction
 - Standard normal
- Uniform distribution
- Exponential distribution: EXPONDIST()

Binomial variable

A binomial experiment is one where:

 Each trial can only have two outcomes: {"success", "failure"}

Success occurs with probability p

• Probability of failure is q = 1-p

 The experiment consists of many (n) of these trials, all identical

The variable x counts how many successes

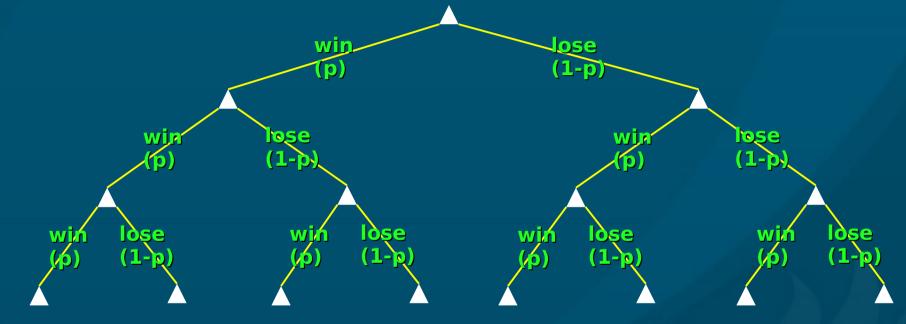
Parameters that define the binomial are (n,p)

 e.g., 60% of customers would buy again: out of 10 randomly chosen customers, what is the chance that 8 would buy again?
 RINITY = p=10, p= 60, question is acking for P(8)

TY • n=10, p=.60, question is asking for P(8) ERN BUSI275: probability distributions 31 Jan 2012

Binomial event tree

To find binomial prob. P(x), look at event tree:



x successes means n-x failures
 Find all the outcomes with x wins, n-x losses:

 Each has same probability: p^x(1-p)^(n-x)
 How many combinations?

Binomial probability

Thus the probability of seeing exactly x successes in a binomial experiment with n trials and a probability of success of p is:

$$P(x) = \binom{n}{x} (p)^{x} (1-p)^{(n-x)}$$

Three parts:

- Number of combinations: "n choose x"
- Probability of x successes: p^x
- Probability of n-x failures: (1 p)^{n x}

Number of combinations

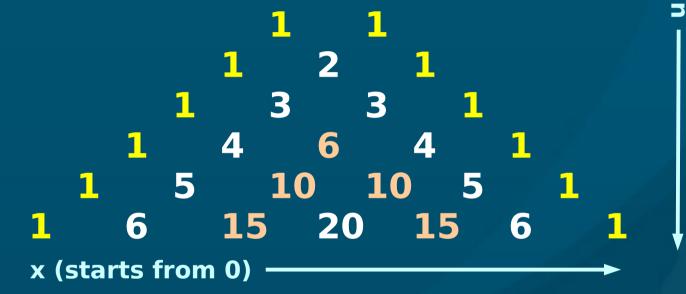
The first part, pronounced "n choose x", is the number of combinations with exactly x wins and n-x losses
Three ways to compute it:

Definition:
n = Cⁿ_x = n!

n! ("n factorial") is (n)(n-1)(n-2)...(3)(2)(1), the number of permutations of n objects
Pascal's Triangle (see next slide)
Excel: COMBIN()

Pascal's Triangle

Handy way to calculate # combinations, for small n:



Or in Excel: COMBIN(n, x) COMBIN(6, 3) → 20

Excel: BINOMDIST()

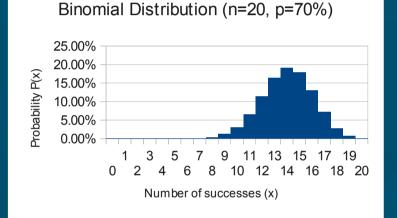
Excel can directly calculate P(x) for a binomial: BINOMDIST(x, n, p, cum) e.g., if 60% of customers would buy again, then out of 10 randomly chosen customers, what is the chance that 8 would buy again? • BINOMDIST(8, 10, .60, 0) \rightarrow 12.09% Set cum=1 for cumulative probability: • Chance that at most 8 (\leq 8) would buy again? ◆ BINOMDIST(8, 10, .60, 1) → 95.36% • Chance that at least 8 (\geq 8) would buy again? ◆ 1 – BINOMDIST(7, 10, .60, 1) → 16.73%

μ and σ of a binomial

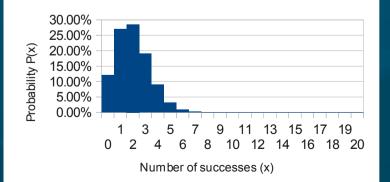
n: number of trials
p: probability of success
Mean: expected # of successes: μ = np
Standard deviation: σ = √(npq)
e.g., with a repeat business rate of p=60%, then out of n=10 customers, on average we would expect μ=6 customers to return, with a standard deviation of σ=√(10(.60)(.40)) ≈ 1.55.

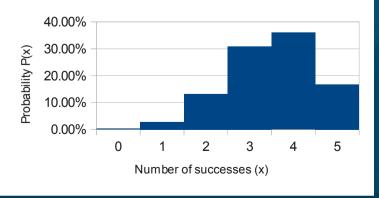
Binomial and normal

When n is not too small and p is in the middle, the binomial approximates the normal:



Binomial Distribution (n=20, p=10%)





Outline for today

Discrete probability distributions

- Finding μ and σ
- Binomial experiments: BINOMDIST()
- Poisson distribution: POISSON()
- Hypergeometric: HYPGEOMDIST()

Continuous probability distributions

- Normal distribution: NORMDIST()
 - Cumulative normal
 - Continuity correction
 - Standard normal
- Uniform distribution
- Exponential distribution: EXPONDIST()

Poisson distribution

Counting how many occurrences of an event happen within a fixed time period:

 e.g., customers arriving at store within 1hr
 e.g., earthquakes per year

 Parameters: λ = expected # occur. per period t = # of periods in our experiment

 P(x) = probability of seeing exactly x occurrences of the event in our experiment

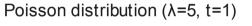
$$P(x) = \frac{(\lambda t)^{x} e^{-\lambda t}}{x!}$$

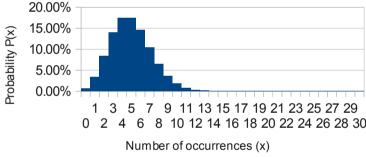
 $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ $= Mean = Mean = \lambda t, and SD = \sqrt{(\lambda t)}$ = Mean = Me

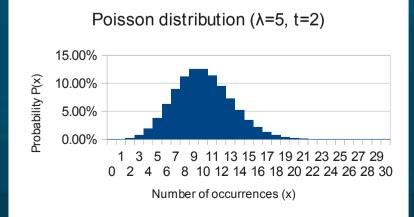
16

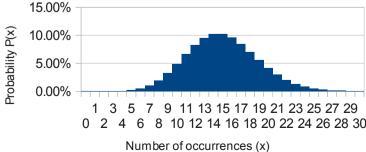
Excel: POISSON()

POISSON(x, λ *t, cum) • Need to multiply λ and t for second param • cum=0 or 1 as with BINOMDIST() Think of Poisson as the Poisson distribution (λ =5, t=1) 20.00% "limiting case" of the 15.00% 10.00% binomial as $n \rightarrow \infty$ and $p \rightarrow 0$









Hypergeometric distribution

 n trials taken from a finite population of size N
 Trials are drawn without replacement: the trials are not independent of each other

 Probabilities change with each trial

 Given that there are X successes in the larger population of size N, what is the chance of finding exactly x successes in these n trials?

$$P(x) = \frac{\binom{N}{x}\binom{N-X}{n-x}}{\binom{N}{n}} \quad (recall \binom{n}{x} = \frac{n!}{x!(n-x)!}$$

Hypergeometric: example

In a batch of 10 lightbulbs, 4 are defective. If we select 3 bulbs from that batch, what is the probability that 2 out of the 3 are defective? • Population: N=10, X=4 Sample (trials): n=3, x=2 $\left(\frac{4!}{2*2}\right)\left(\frac{6!}{1*5!}\right)$ $\binom{4}{2}\binom{10-4}{3-2}$ **P**(2) 10*9*8 In Excel: HYPGEOMDIST(x, n, X, N) • HYPGEOMDIST(2, 3, 4, 10) \rightarrow 30%

Outline for today

Discrete probability distributions

- Finding μ and σ
- Binomial experiments: BINOMDIST()
- Poisson distribution: POISSON()
- Hypergeometric: HYPGEOMDIST()

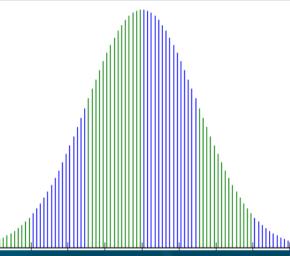
Continuous probability distributions

- Normal distribution: NORMDIST()
 - Cumulative normal
 - Continuity correction
 - Standard normal
- Uniform distribution
- Exponential distribution: EXPONDIST()

Normal distribution

The normal "bell" curve has a formal definition:

$$N(\mu,\sigma)(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$



Mean is μ, standard deviation is σ
 Drops exponentially with z-score
 Normalized so total area under curve is 1
 Excel: NORMDIST(x, μ, σ, cum)

 e.g., exam has μ=70, σ=10. What is probability of getting a 65?
 =NORMDIST(65, 70, 10, 0) → 3.52%



Cumulative normal

Usually, we are interested in the probability over a range of values:

Area of a region under the normal curve
 The cumulative normal gives area under the normal curve, to the left of a threshold:

- e.g., exam with μ =70, σ =10. What is probability of getting below 65?
- = NORMDIST(65, 70, 10, 1) \rightarrow 30.85%
- e.g., getting between 75 and 90?

 ■NORMDIST(90, 70, 10, 1) – NORMDIST(75, 70, 10, 1) → 28.58%

Inverse function

 Excel can also find the threshold (x) that matches a given cumulative normal probability:
 NORMINV(area, μ, σ)

E.g., assume air fares for a certain itinerary are normally distrib with σ=\$50 but unknown μ.
 The 90th percentile fare is at \$630.
 What is the mean air fare?

• We have: NORMINV(.90, μ , 50) = 630, so

• =630 – NORMINV(.90, 0, 50) $\rightarrow \mu =$ \$565.92

Continuity correction

For discrete variables (e.g., integer-valued):

e.g., # of students
 per class, assumed to be normally
 distributed with μ=25, σ=10

The range can be inclusive or exclusive:
 Probability of a class having fewer than 10?
 <10: excludes 10

• At least 30 students? \geq 30: includes 30 • Edge of the bar is at ±0.5 from the centre • <10: =NORMDIST(9.5, 25, 10, 1) \rightarrow 6.06% • \geq 30: =1-NORMDIST(29.5, 25, 10, 1) \rightarrow 32.6%

Normal Distribution

0.15

0.1

0.05

0

65

66

67

68

69

Х

Freq

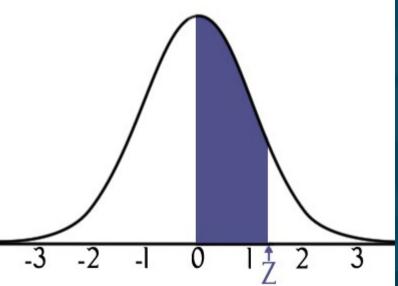
72.5

70 71 72 73

74

Standard normal

- There is a whole family of normal distributions, with varying means and standard deviations
- The standard normal is the one that has $\mu=0, \sigma=1$
- This means z-scores and x-values are the same!
- In Excel: NORMSDIST(x) (cumulative only) and NORMSINV(area)



Outline for today

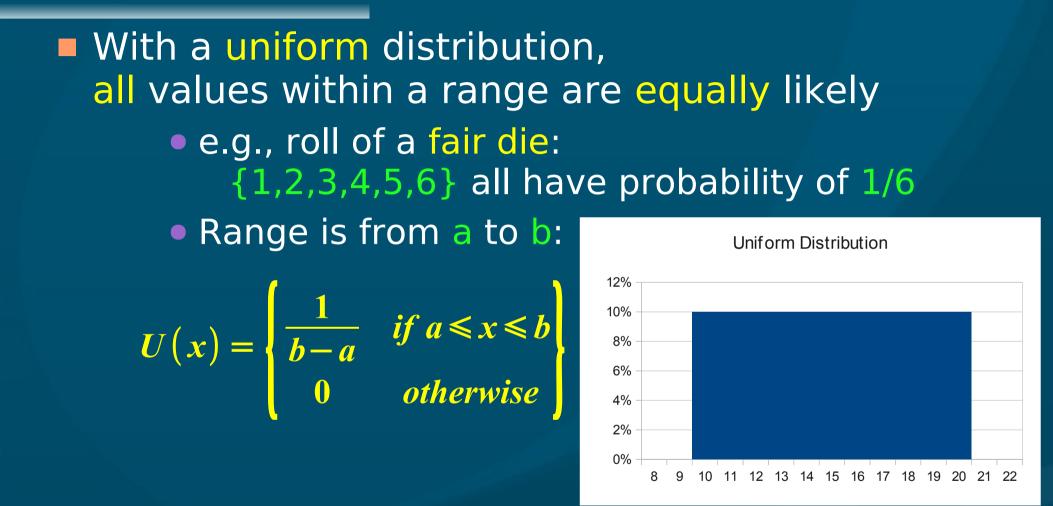
Discrete probability distributions

- Finding μ and σ
- Binomial experiments: BINOMDIST()
- Poisson distribution: POISSON()
- Hypergeometric: HYPGEOMDIST()

Continuous probability distributions

- Normal distribution: NORMDIST()
 - Cumulative normal
 - Continuity correction
 - Standard normal
- Uniform distribution
- Exponential distribution: EXPONDIST()

Uniform distribution



■ μ =(a+b)/2, σ = $\sqrt{(b-a)^2/12}$

Exponential distribution

Time between occurrences of an event

 e.g., time between two security breaches

 Exponential density: probability that the time between occurrences is exactly x is:

 $E(x) = \lambda e^{-\lambda x}$ • 1/\lambda = mean time between occurrences • Need both x, \lambda > 0 • EXPONDIST(x, \lambda, cum) • Density: cum=0

Exponential probability

Exponential probability (cumulative distribution) is the probability that the time between occurrences is less than x:

 $P(0 \le x \le a) = 1 - e^{-\lambda a}$

• Excel: EXPONDIST(x, λ , 1)

e.g., average time between purchases is 10min. What is the probability that two purchases are made less than 5min apart?

• EXPONDIST(5, 1/10, 1) \rightarrow 39.35%

• Don't forget to convert from $1/\lambda$ to λ

HW3 (ch4): due this Thu 26 an Proposal meetings this week • Submit proposal \geq 24hrs before meeting Dataset description next week: 7Feb If using existing data, need to have it! If gather new data, have everything for your **REB** application: sampling strategy, recruiting script, full questionnaire, etc. REB application in two weeks: 14Feb (or earlier) If not REB exempt, need printed signed copy

