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Outline for todayOutline for today

 Discrete probability distributions
● Finding μ and σ
● Binomial experiments: BINOMDIST()
● Poisson distribution: POISSON()
● Hypergeometric: HYPGEOMDIST()

 Continuous probability distributions
● Normal distribution: NORMDIST()

 Cumulative normal
 Continuity correction
 Standard normal

● Uniform distribution
● Exponential distribution: EXPONDIST()
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Discrete probability distribsDiscrete probability distribs

 A random variable takes on numeric values
● Discrete if the possible values can be 

counted, e.g., {0, 1, 2, …} or {0.5, 1, 1.5}
● Continuous if precision is limited only by our 

instruments
 Discrete probability distribution:

for each possible value X,
list its probability P(X)

● Frequency table, or
● Histogram

 Probabilities must add to 1
● Also, all P(X) ≥ 0
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Probability distributionsProbability distributions

Discrete 
Random Variable

Continuous
Random VariableCh. 5 Ch. 6

Binomial Normal

Poisson Uniform

Hypergeometric Exponential
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Mean and SD of discrete distr.Mean and SD of discrete distr.

 Given a discrete probability distribution P(X),
 Calculate mean as weighted average of values:

 E.g., # of email addresses: 0% have 0 addrs;
30% have 1; 40% have 2; 3:20%; P(4)=10%

● μ = 1*.30 + 2*.40 + 3*.20 + 4*.10 = 2.1
 Standard deviation:

μ=∑
X

X P (X )

σ=√∑
X

(X−μ)
2 P (X )
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Outline for todayOutline for today
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 Continuous probability distributions
● Normal distribution: NORMDIST()

 Cumulative normal
 Continuity correction
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● Uniform distribution
● Exponential distribution: EXPONDIST()
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Binomial variableBinomial variable

 A binomial experiment is one where:
● Each trial can only have two outcomes: 

{“success”, “failure”}
● Success occurs with probability p

 Probability of failure is q = 1-p
● The experiment consists of many (n) of these 

trials, all identical
● The variable x counts how many successes

 Parameters that define the binomial are (n,p)
 e.g., 60% of customers would buy again:

out of 10 randomly chosen customers,
what is the chance that 8 would buy again?

● n=10, p=.60, question is asking for P(8)
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Binomial event treeBinomial event tree

 To find binomial prob. P(x), look at event tree:

 x successes means n-x failures
 Find all the outcomes with x wins, n-x losses:

● Each has same probability: px(1-p)(n-x)

● How many combinations?

winwin
(p)(p)

loselose
(1-p)(1-p)

winwin
(p)(p)

loselose
(1-p)(1-p)

winwin
(p)(p)

loselose
(1-p)(1-p)

winwin
(p)(p)

loselose
(1-p)(1-p)

winwin
(p)(p)

loselose
(1-p)(1-p)

winwin
(p)(p)

loselose
(1-p)(1-p)

winwin
(p)(p)

loselose
(1-p)(1-p)
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Binomial probabilityBinomial probability

 Thus the probability of seeing
exactly x successes in a binomial experiment 
with n trials and a probability of success of p is:

 Three parts:
● Number of combinations: “n choose x”
● Probability of x successes: px

● Probability of n-x failures: (1 – p)n – x

P ( x)=( nx) ( p)
x
(1− p)(n− x )
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Number of combinationsNumber of combinations

 The first part, pronounced “n choose x”,
is the number of combinations
with exactly x wins and n-x losses

 Three ways to compute it:
● Definition:

 n! (“n factorial”) is (n)(n-1)(n-2)...(3)(2)(1),
the number of permutations of n objects

● Pascal's Triangle (see next slide)
● Excel: COMBIN()

( nx ) = C x
n =

n!
x ! (n− x )!
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Pascal's TrianglePascal's Triangle

 Handy way to calculate # combinations,
for small n:

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

 Or in Excel: COMBIN(n, x)
● COMBIN(6, 3) → 20

n
 

x (starts from 0)
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Excel: BINOMDIST()Excel: BINOMDIST()

 Excel can directly calculate P(x) for a binomial:
● BINOMDIST(x, n, p, cum)

 e.g., if 60% of customers would buy again,
then out of 10 randomly chosen customers,
what is the chance that 8 would buy again?

● BINOMDIST(8, 10, .60, 0) → 12.09%
 Set cum=1 for cumulative probability:

● Chance that at most 8 (≤8) would buy again?
 BINOMDIST(8, 10, .60, 1) → 95.36%

● Chance that at least 8 (≥8) would buy again?
 1 – BINOMDIST(7, 10, .60, 1) → 16.73%
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μ and σ of a binomialμ and σ of a binomial

 n: number of trials
p: probability of success

 Mean: expected # of successes: μ = np
 Standard deviation: σ = √(npq)
 e.g., with a repeat business rate of p=60%, 

then out of n=10 customers, on average we 
would expect μ=6 customers to return, with a 
standard deviation of σ=√(10(.60)(.40)) ≈ 1.55.
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Binomial and normalBinomial and normal

 When n is not too small and p is in the middle, 
the binomial approximates the normal:
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Outline for todayOutline for today

 Discrete probability distributions
● Finding μ and σ
● Binomial experiments: BINOMDIST()
● Poisson distribution: POISSON()
● Hypergeometric: HYPGEOMDIST()

 Continuous probability distributions
● Normal distribution: NORMDIST()

 Cumulative normal
 Continuity correction
 Standard normal

● Uniform distribution
● Exponential distribution: EXPONDIST()
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Poisson distributionPoisson distribution

 Counting how many occurrences of an event 
happen within a fixed time period:

● e.g., customers arriving at store within 1hr
● e.g., earthquakes per year

 Parameters: λ = expected # occur. per period
t = # of periods in our experiment

● P(x) = probability of seeing exactly x 
occurrences of the event in our experiment

 Mean = λt, and SD = √(λt)

P ( x )=
(λ t) x e−λ t

x !
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Excel: POISSON()Excel: POISSON()

 POISSON(x, λ*t, cum)
● Need to multiply λ and t for second param
● cum=0 or 1 as with BINOMDIST()

 Think of Poisson as the
“limiting case” of the
binomial as n→∞ and p→0
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Hypergeometric distributionHypergeometric distribution

 n trials taken from a finite population of size N
 Trials are drawn without replacement:

the trials are not independent of each other
● Probabilities change with each trial

 Given that there are X successes in the larger 
population of size N, what is the chance of 
finding exactly x successes in these n trials?

P ( x ) =
( Xx ) (N−X

n− x )

(Nn )
( recall ( nx) =

n!
x !(n− x ) !

)



31 Jan 2012BUSI275: probability distributions 19

Hypergeometric: exampleHypergeometric: example

 In a batch of 10 lightbulbs, 4 are defective.
 If we select 3 bulbs from that batch, what is the 

probability that 2 out of the 3 are defective?
● Population: N=10, X=4
● Sample (trials): n=3, x=2

 In Excel: HYPGEOMDIST(x, n, X, N)
● HYPGEOMDIST(2, 3, 4, 10) → 30%

P (2) =
(42) (

10−4
3−2 )

(103 )
=

( 4!
2∗2 ) (

6!
1∗5! )

( 10!
3!∗7! )

=
(3!)(6)

( 10∗9∗83! )
=
3
10
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Outline for todayOutline for today

 Discrete probability distributions
● Finding μ and σ
● Binomial experiments: BINOMDIST()
● Poisson distribution: POISSON()
● Hypergeometric: HYPGEOMDIST()

 Continuous probability distributions
● Normal distribution: NORMDIST()

 Cumulative normal
 Continuity correction
 Standard normal

● Uniform distribution
● Exponential distribution: EXPONDIST()
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Normal distributionNormal distribution

 The normal “bell” curve has a formal definition:

 Mean is μ, standard deviation is σ
 Drops exponentially with z-score
 Normalized so total area under curve is 1
 Excel: NORMDIST(x, μ, σ, cum)

● e.g., exam has μ=70, σ=10.
What is probability of getting a 65?

● =NORMDIST(65, 70, 10, 0) → 3.52%

N (μ ,σ)( x ) =
1

σ √2π
e
−
1
2 ( x−μ

σ )
2
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Cumulative normalCumulative normal

 Usually, we are interested in the probability 
over a range of values:

● Area of a region under the normal curve
 The cumulative normal gives area under the 

normal curve, to the left of a threshold:
● e.g., exam with μ=70, σ=10.

What is probability of getting below 65?
● =NORMDIST(65, 70, 10, 1) → 30.85%
● e.g., getting between 75 and 90?
● =NORMDIST(90, 70, 10, 1) –

NORMDIST(75, 70, 10, 1) → 28.58%
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Inverse functionInverse function

 Excel can also find the threshold (x) that 
matches a given cumulative normal probability:

● NORMINV(area, μ, σ)
 E.g., assume air fares for a certain itinerary are 

normally distrib with σ=$50 but unknown μ.
The 90th percentile fare is at $630.
What is the mean air fare?

● We have: NORMINV(.90, μ, 50) = 630, so
● =630 – NORMINV(.90, 0, 50) → μ=$565.92
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Continuity correctionContinuity correction

 For discrete variables
(e.g., integer-valued):

● e.g., # of students
per class, assumed to be normally 
distributed with μ=25, σ=10

 The range can be inclusive or exclusive:
● Probability of a class having fewer than 10?

 <10: excludes 10
● At least 30 students?  ≥30: includes 30

 Edge of the bar is at ±0.5 from the centre
● <10: =NORMDIST(9.5, 25, 10, 1) → 6.06%
● ≥30: =1-NORMDIST(29.5, 25, 10, 1) → 32.6%

72.5
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Standard normalStandard normal

 There is a whole family of normal distributions, 
with varying means and standard deviations

 The standard normal is the one that has
μ=0, σ=1

 This means z-scores and x-values are the same!
 In Excel: NORMSDIST(x) (cumulative only) and

NORMSINV(area)
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Uniform distributionUniform distribution

 With a uniform distribution,
all values within a range are equally likely

● e.g., roll of a fair die:
{1,2,3,4,5,6} all have probability of 1/6

● Range is from a to b:

 μ=(a+b)/2, σ=√( (b-a)2/12 )

U ( x) = {
1
b−a

if a⩽ x⩽b

0 otherwise }
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Exponential distributionExponential distribution

 Time between occurrences of an event
● e.g., time between two security breaches

 Exponential density: probability that the time 
between occurrences is exactly x is:

● 1/λ = mean time
between
occurrences

● Need both x, λ > 0
 EXPONDIST(x, λ, cum)

● Density: cum=0

E ( x ) = λ e−λ x
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Exponential probabilityExponential probability

 Exponential probability (cumulative distribution) 
is the probability that the time between 
occurrences is less than x:

● Excel: EXPONDIST(x, λ, 1)
 e.g., average time between purchases is 10min.

What is the probability that two purchases are 
made less than 5min apart?

● EXPONDIST(5, 1/10, 1) → 39.35%
● Don't forget to convert from 1/λ to λ

P (0≤ x≤a) = 1−e−λ a
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TODOTODO

 HW3 (ch4): due this Thu 26Jan
 Proposal meetings this week

● Submit proposal ≥24hrs before meeting
 Dataset description next week: 7Feb

● If using existing data, need to have it!
● If gather new data, have everything for your 

REB application: sampling strategy, 
recruiting script, full questionnaire, etc.

 REB application in two weeks: 14Feb (or earlier)
● If not REB exempt, need printed signed copy
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