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● Please download:
09-Regression.xls

● HW6 this week
● Projects

http://busi275.seanho.com/
http://twu.seanho.com/12spr/busi275/lectures/09-Regression.xls
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Outline for todayOutline for today

 Correlation
● r2 as fraction of variability
● t-test on correlation

 Prediction using Simple Linear Regression
● Linear regression model
● Regression in Excel
● Analysis of variance: Model vs. Residual
● The global F-test
● T-test on slope b1

● Confidence intervals on predicted values
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Linear correlationLinear correlation

 Correlation measures the strength of
a linear relationship between two variables

 Does not determine direction of causation
 Does not imply a direct relationship

● There might be a mediating variable
(e.g., between ice cream and drownings)

 Does not account for non-linear relationships
 The Pearson product-moment correlation 

coefficient (r) is between -1 and 1
● Close to -1: inverse relationship
● Close to 0: no linear relationship
● Close to +1: positive relationship
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Correlation on scatterplotsCorrelation on scatterplots
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Correlation is an effect sizeCorrelation is an effect size

 We often want to understand the variance in 
our outcome variable:

● e.g., sales: why are they high or low?
 What fraction of the variance in one variable is 

explained by a linear relationship w/the other?
● e.g., 50% of the variability in sales is 

explained by the size of advertising budget

 The effect size is r2: a fraction from 0% to 100%
● Also called the coefficient of determination

Sales Advert
(shared

variability)
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Correlation: t-testCorrelation: t-test

 r is sample correlation (from data)
 ρ is population correlation (want to estimate)
 Hypothesis: HA: ρ ≠ 0 (is there a relationship?)

 Standard error:

● 1 – r2 is the variability not explained by the 
linear relationship

● df = n–2 because we have two sample means
 Test statistic: t = r / SE

● Use TDIST() to get p-value

SE = √ 1−r
2

df
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Correlation: exampleCorrelation: example

 e.g., is there a linear relationship between
caffeine intake and time spent in Angry Birds?

● HA: ρ ≠ 0 (i.e., there is a relationship)

● Data: 8 participants, r = 0.72
 Effect size: r2 = 0.722 = 51.84%

● About half of variability in AB time is 
explained by caffeine intake

 Standard error: SE = √((1-0.5184) / 6) ≈ 0.2833
 Test statistic: t = 0.72 / 0.2833 ≈ 2.54
 P-value: TDIST(2.54, 6, 2) → 4.41%
 At α=0.05, there is a significant relationship
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Correlation: ExcelCorrelation: Excel

 Example: “Trucks” in 09-Regression.xls
 Scatterplot: POE Gross (G:G), WIM Gross (H:H)
 Correlation: CORREL(dataX, dataY)

● Coefficient of determination: r2

 T-test:
● Sample r
● → SE
● → t-score
● → p-value
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http://twu.seanho.com/12spr/busi275/lectures/09-Regression.xls
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Correl. and χCorrel. and χ22 independence independence

 Pearson correlation is for two quantitative 
(continuous) variables

 For ordinal variables, there exists a
non-parametric version by Spearman (rs)

 What about for two categorical variables?
● χ2 test of goodness-of-fit (ch13)
● 2-way contingency tables (pivot tables)
● Essentially a hypothesis test on 

independence
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Outline for todayOutline for today

 Correlation
● r2 as fraction of variability
● t-test on correlation

 Prediction using Simple Linear Regression
● Linear regression model
● Regression in Excel
● Analysis of variance: Model vs. Residual
● The global F-test
● T-test on slope b1

● Confidence intervals on predicted values
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Regression: the conceptRegression: the concept

 Regression is about using one or more IVs
to predict values in the DV (outcome var)

● E.g., if we increase advertising budget,
will our sales increase?

 The model describes how to predict the DV
● Input: values for the IV(s).  Output: DV value

 Linear regression uses linear functions
(lines, planes, etc.) for the models

● e.g., Sales = 0.5*AdvBudget + 2000
● Every $1k increase in advertising budget 

yields 500 additional sales, and
● With $0 spending, we'll still sell 2000 units
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Regression: the modelRegression: the model

 The linear model has the form
● Y = β0 + β1X + ε

 X is the predictor, Y is the outcome,
● β0 (intercept) and β1 (slope)

describe the line of best fit (trend line), and
● ε represents the residuals: where the trend 

line doesn't fit the observed data
 ε = (actual Y) – (predicted Y)

 The residuals average out to 0, and if the model 
fits the data well, they should be small overall

● Least-squares fit: minimize SD of residuals

y

x

ε trend
line
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Regression: Trucks exampleRegression: Trucks example

 Trucks example
 Scatterplot:

X: POE Gross (G:G)
Y: WIM Gross (H:H)

 Layout → Trendline
● Linear, R2

 Regression model:
● Slope β1: SLOPE(dataY, dataX)

● Intercept β0: INTERCEPT(dataY, dataX)

 SD of the residuals: STEYX(dataY, dataX)
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Regression: assumptionsRegression: assumptions

 Both IV and DV must be quantitative
● (extensions exist for other levels of meas.)

 Independent observations
● Not repeated-measures or hierarchical

 Normality of residuals
● DV need not be normal, but residuals do

 Homoscedasticity
● SD of residuals

constant along the line
 These 4 are called: parametricity

● T-test had similar assumptions
Omid Rouhani

http://www.omidrouhani.com/research/logisticregression/html/logisticregression.htm
http://www.omidrouhani.com/research/logisticregression/html/logisticregression.htm
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Regression: Banks exampleRegression: Banks example

 “Banks” in 09-Regression.xls
 Scatterplot:

X: Employees (D:D)
Y: Profit (C:C)

 Layout → Trendline
 Correlation r:

● CORREL(datY, datX)
 Regression model:

● Intercept b0: INTERCEPT(dataY, dataX)

● Slope b1: SLOPE(dataY, dataX)

● SD of residuals (sε): STEYX(dataY, dataX)

http://twu.seanho.com/12spr/busi275/lectures/09-Regression.xls
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Using regression for predictionUsing regression for prediction

 Assuming that our linear model is correct,
we can then predict profits for new companies, 
given their size (number of employees)

● Profit ($mil) = 0.039*Employees – 36.45
 e.g., for a company with 1000 employees, our 

model predicts a profit of $2.558 million
● This is a point estimate; sε adds uncertainty

 Predicted Ŷ values: using X values from data
● Citicorp: Ŷ = 0.039*93700 – 36.45 ≈ 3618

 Residuals: (actual Y) – (predicted Y):
● Y - Ŷ = 3591 – 3618 = -27.73 ($mil)
● Overestimated Citicorp's profit by $27.73 mil
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Outline for todayOutline for today

 Correlation
● r2 as fraction of variability
● t-test on correlation

 Prediction using Simple Linear Regression
● Linear regression model
● Regression in Excel
● Analysis of variance: Model vs. Residual
● The global F-test
● T-test on slope b1

● Confidence intervals on predicted values
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Analysis of varianceAnalysis of variance

 In regression, R2 indicates the fraction of 
variability in the DV explained by the model

● If only 1 IV, then R2 = r2 from correlation

 Total variability in DV: SStot = Σ(yi – y)2

● =VAR(dataY) * (COUNT(dataY) – 1)

 Explained by model: SSmod = SStot * R2

 Unexplained (residual): SSres = SStot – SSmod

● Can also get from Σ(yi – ŷi)
2

 Hence the total variability is decomposed into:
● SStot = SSmod + SSres

● (book: SST = SSR + SSE)
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Regression: global Regression: global FF-test-test

 Follow the pattern from the regular SD:

σ = √ 1
n−1∑ ( x− x̄ )2

Total (on DV) Model Residual

SS SStot = Σ(y - y)2 SSmod = Σ(ŷ - y)2 SSres = Σ(y - ŷ)2

df n – 1 #vars – 1 n - #vars

MS = SS/df SStot / (n-1) SSmod / 1 SSres / (n–2)

SD = √(MS) sY - sε (=STEYX)

 The test statistic is F = MSmod / MSres

● Get p-value from FDIST(F, dfmod, dfres)
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Calculating the F testCalculating the F test

 Key components are the SSmod and SSres

 If we already have R2, the easiest way is:
● Find SStot = VAR(dataY) * (n-1)

 e.g., Banks: 38879649 (≈ 39e6)

● Find SSmod = SStot * R2

 e.g., 39e6 * 88.53% ≈ 34e6

● Find SSres = SStot – SSmod

 e.g., 39e6 – 34e6 ≈ 5e6

 Otherwise, find SSres using pred ŷ and residuals

 Or, work backwards from sε = STEYX(Y, X)

 e.g., SSres = (301)2 * (n-2)
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F-test on RF-test on R22 vs. t-test on r vs. t-test on r

 If only one predictor, the tests are equivalent:
● F = t2,

 e.g., Banks: F ≈ 378, t ≈ 19.4

● F-dist with dfmod = 1 is same as t-dist

 Using same dfres

 If multiple IVs, then there are multiple r's
● Correlation only works on pairs of variables

 F-test is for the overall model with all predictors
● R2 indicates fraction of variability in DV 

explained by the complete model,
including all predictors
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Outline for todayOutline for today

 Correlation
● r2 as fraction of variability
● t-test on correlation

 Prediction using Simple Linear Regression
● Linear regression model
● Regression in Excel
● Analysis of variance: Model vs. Residual
● The global F-test
● T-test on slope b1

● Confidence intervals on predicted values
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T-test on slopes bT-test on slopes b
ii

 In a model with multiple predictors,
there will be multiple slopes (b1, b2, …)

 A t-test can be run on each bi to test if that 
predictor is significantly correlated with the DV

 Let SSX = Σ(x – x)2 be for the predictor X:

 Then the standard error for its slope b1 is

● SE(b1) = sε / √SSX

 Obtain t-score and apply a t-dist with dfres:

● =TDIST( b1 / SE(b1), dfres, tails )

 If only 1 IV, the t-score is same as for r



13 Mar 2012BUSI275: regression 24

Summary of hypothesis testsSummary of hypothesis tests

 Regression with only 1 IV is same as correlation
● All tests would then be equivalent

Correlation Regression Slope on X1

Effect
size

r R2 b1

SE √( (1-r2) / df ) - sε / √SSX

df n - 1 df1 = #var – 1
df2 = n - #var n - #var

Test 
statistic t = r / SE(r)

F =
MSmod / MSres

t = b1 / SE(b1)
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Confidence int. on predictionsConfidence int. on predictions

 Given a value x for the IV, our model predicts a 
point estimate ŷ for the (single) outcome:

● ŷ = b0 + b1*x

 The standard error for this estimate is

● Recall that SSX = Σ(x – x)2

 Confidence interval: ŷ ± t * SE(ŷ)
 When estimating the average outcome, use

SE ( ŷ) = sϵ √ 1+ 1n+
( x− x̄ )2

SS X

SE ( ŷ) = sϵ√ 1n+
( x− x̄ )2

SS X
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TODOTODO

 HW6 due Thu
 Projects: be pro-active and self-led

● If waiting on REB approval:
generate fake (reasonable) data and
move forward on analysis, presentation

● Remember your potential clients:
what questions would they like answered?

● Tell a story/narrative in your presentation
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