Ch12-13: Factorial ANOVA, Blocking ANOVA, and χ^2 Test

27 Mar 2012 Dr. Sean Ho

busi275.seanho.com

Please download: 11-ANOVA.xls
HW8 this week
Presentations in two weeks!

Outline for today

Factorial ANOVA (multiple nominal IVs)

- Graphing
- Main effects and interaction
- Randomized Complete Block ANOVA
 - Fixed vs. random effects
 - Post-hoc analysis: Fisher's LSD

χ² goodness-of-fit test: observed vs. expected

Test against uniform distribution

CHIDIST(), CHITEST()

- Test of normality
- Test 2 nominal vars for independence
 - Marginal probabilities

Overview: regression / ANOVA

Both: DV (outcome) quantitative Regression: IVs quant. (or use dummy coding) ANOVA: IVs nominal Global F-test: do all IVs together impact DV? • R²: fraction of variability in DV explained Main effects: each IV's contribution • Significance (p-val) vs. effect size (unique R²) Follow-up (nominal IVs): Tukey-Kramer See "Delivery" in 11-ANOVA.xls Interaction: • Multiple regr: include $X_1 * X_2$ as a predictor Factorial ANOVA (2-way, 3-way, etc.) 75: ANOVA Mar 2012

2-way ANOVA

\$40 \$20 Equivalent to multiple regression \$25 \$32 • Except with nominal predictors IV2: \$30 \$26 Src \$25 N-way ANOVA for N predictors \$40 \$45 \$52 \$43 IVs are "between-groups" factors: \$39 \$48 Divide up sample into cells • Each participant in only 1 cell If your IVs are mixed continuous / nominal, try regression using dummy-coded variables • Although this may result in many IVs! You can also try ANCOVA: Continuous "covariates" are first factored out then regular ANOVA is done on residuals

DV: Purch Amt

IV1: Gender

\$17 \$21

\$19 \$22

\$22 \$19

\$50 \$60

\$55

2-way: assumptions IV1: Gender \$40 \$20 \$17 \$21 Same as for regular ANOVA, per cell: \$25 \$32 <u>t 1 9</u> **V2**: • DV continuous \$30 \$26 \$22 \$19 \$25 Src Independent observations and \$40 \$45 \$50 \$60 independent cells (groups) \$55 • DV normal within each cell Variance of DV similar across all cells: (largest SD) / (smallest SD) < 2 • Better: Levene's test of homoscedasticity The last two are less important as long as: Total sample size is reasonably large (>50) Balanced design: all cells similar sample size No rows/cols are completely empty

BUSI275: ANOVA

DV: Purch Amt

Graphing 2-way ANOVA data

Dataset: "Eukanuba" in 11-ANOVA.xls
 The DV has a different distribution in each cell
 One way to visualize: condense it down to the average of DV within each cell
 Pivot Table:

- Formula (row)
- Plant (col)
- Average of Fat (data)

Try a line chart:

2-way ANOVA: model

Main effects on each IV, plus interactions: • Fat = b_0 + (Formula effect) + (Plant effct) + (Formula*Plant effect) + ε Decomposition of variance: • $SS_{tot} = SS_{For} + SS_{Plt} + SS_{For*Plt} + SS_{resid}$ Global F-test looks for any effect of IVs on DV If not significant, check for violations of assumptions

Effect size η² is akin to R²: 1 – (SS_{resid} / SS_{tot})

2-way ANOVA: calculating

-	IV ₁ (a levels)	IV ₂ (b levels)	IV ₁ *IV ₂ (Interaction)
SS	$bn\sum_{i=1}^{a} (\bar{x}_i - \bar{x})^2$	$an\sum_{j=1}^{b} (\bar{x}_j - \bar{x})^2$	$n \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{x}_{ij} - \bar{x}_i - \bar{x}_j + \bar{x})^2$
df	a - 1	b – 1	(a - 1) * (b - 1)

Also find SS_{tot} as before, and SS_{res}
 df_{tot} = n - 1, and df_{res} = n - ab
 The SS and df always add up:

 Tot = IV₁ + IV₂ + (IV₁*IV₂) + Resid

 3 F-tests: IV₁, IV₂, and interaction

 e.g., main effect on IV₁: F = MS₁ / MS_{res}

Main effects

A main effect is a one-way ANOVA on one IV, after controlling for the other predictors

> Analogous to t-tests on slope for each IV in multiple regression

Here, the main effects are themselves F-tests

E.g., do females spend more at your site, after accounting for source?

 2-way ANOVA on both Gender and Source, then look at main effect of Gender

E.g., do different formulas have different fat content, across all plants?

Interactions

- When the effect of one IV on the DV changes, depending on the level of the moderator
- e.g., females spend more in response to print ads, but males spend more in response to web
- e.g., Henderson generally has lower fat than the other plants, except for Large Breed, where it has the secondAverage Crude Fat by Formula and Plant
 - highest fat:
- Plot means, note change in shape of the curves

27 Mar 2012

10

Outline for today

Factorial ANOVA (multiple nominal IVs)

- Graphing
- Main effects and interaction
- Randomized Complete Block ANOVA
 - Fixed vs. random effects
 - Post-hoc analysis: Fisher's LSD

 \mathbf{I} χ^2 goodness-of-fit test: observed vs. expected

Test against uniform distribution

CHIDIST(), CHITEST()

- Test of normality
- Test 2 nominal vars for independence
 - Marginal probabilities

Randomized Complete Block

Randomized Block model

A complete 2-way ANOVA on this data would have zero residual in each cell So the interaction term serves as "residual" Tot = Factor + Blocking + Residual • $df_{res} = (a - 1)(b - 1)$ Factor effect (IV_1) : $F = MS_1 / MS_{res}$ This is usually what we're most interested in Blocking effect (IV_2) : $F = MS_2 / MS_{res}$ If non-sig, then blocking was not necessary and we could've just done a 1-way ANOVA

Post-hoc: Fisher's LSD test

If the factor effect is significant, one post-hoc test we can use is Fisher's least sig. diff. test Like Tukey-Kramer, but for equal-size cells Critical range: $LSD = t \sqrt{\frac{2 MS_{res}}{h}}$ • t: 2-tails, use df • b: # blocks (\mathbb{N}_2) For all pairs of levels of the main factor, if the difference of means $|x_{i} - x_{i}|$ exceeds LSD, then those two groups differ significantly • Use the results to cluster the factor levels

Outline for today

Factorial ANOVA (multiple nominal IVs)

- Graphing
- Main effects and interaction
- Randomized Complete Block ANOVA
 - Fixed vs. random effects
 - Post-hoc analysis: Fisher's LSD

• χ^2 goodness-of-fit test: observed vs. expected

Test against uniform distribution

CHIDIST(), CHITEST()

- Test of normality
- Test 2 nominal vars for independence
 - Marginal probabilities

Goodness of fit

The χ² (chi-squared) test is one way to assess goodness of fit:

> How well an observed distribution fits a hypothesized distribution

 Hypothesized distribution can be uniform, normal, etc.

 χ² can also be applied to test if two nominal variables are independent

- Compare pivot table (contingency table) with hypothesized results if vars independent
- Analogous to correlation for continuous vars

Procession of the second

χ^2 vs. uniform distribution

e.g., are technical support calls evenly distributed across the weekdays? • H_o: evenly distributed, matches uniform dist. Expected # calls per day (uniform distribution): Total observed calls (1300), divided by 5 Observed 290 238 250 257 265 Expected 260 260 260 260 260

• Test statistic: $\chi^2 = \sum \frac{(o_i - e_i)^2}{e_i}$ Use CHIDIST(χ^2 , #cells – 1) Or CHITEST(obs, exp)

BUSI275: Categorical Data

χ^2 vs. normal distribution

e.g., are student test scores normally distrib?								
Other normality tests: Shapiro-Wilk, K-S								
Count fre	Bin	Freq	Norm Freq					
How to find	40							
Eind maan SD of the data				1.30				
Find mean, SD of the data			4	2.77				
Use NORMDIST() to find percentage				5.14				
of the data that would lie within				8.28				
each hin on the ideal normal				11.60				
		70	7	14.11				
	• NORMDIST(80, μ , σ , T) –	75	11	14.93				
	NORMDIST(75, μ , σ , 1)	80	15	13.72				
		85	22	10.97				
		90	9	7.62				
-2 -1 0 1 2 3		95	4	4.60				
		100	0	2.41				

UNIVERSITY

Outline for today

Factorial ANOVA (multiple nominal IVs)

- Graphing
- Main effects and interaction
- Randomized Complete Block ANOVA
 - Fixed vs. random effects
 - Post-hoc analysis: Fisher's LSD

 \mathbf{I} χ^2 goodness-of-fit test: observed vs. expected

- Test against uniform distribution
 - CHIDIST(), CHITEST()
- Test of normality
- Test 2 nominal vars for independence
 - Marginal probabilities

Contingency tables

Joint freq. distribs for multiple nominal variables • Each cell of the table holds the # (frequency) of observations that match that combo Pivot tables, with Count in the Data field E.g., Handedness vs. Gender • H₀: handedness is independent of gender: the probability of being left-handed stays the same, regardless of the gender • P(left | M) = P(left | F) = P(left)

Observed	Left	Right		
Male	17	163		
Female	33	167		

χ² on 2-way contingency

Expected values assume independence Calculate marginal probabilities: R Tot • P(female) = $200/380 \approx 52.6\%$ 17 163 180 Μ 167 200 33 F • P(left) = $50/380 \approx 13.2\%$ 50 330 380 Tot Assuming independence, • $P(F \cap L) = P(F) * P(L) = (.526)(.132)$ Thus the expected count for $(F \cap L)$ is • P(F) * P(L) * (total) = (.526)(.132)(380)• Calculate χ^2 summed over all cells of df = (#rows - 1) (#cols - 1) $\bullet = 1$ in this case!

Summary on χ^2

Test of goodness-of-fit: observed vs. expected May apply to a single nominal variable: • Expected distrib. may be uniform, normal, ... May apply to two nominal variables: • Expected distrib. is that vars are independent • Akin to correlation on continuous variables • Large $\chi^2 \leftrightarrow |\mathbf{r}| \approx 1$ But only an approximation to the true distrib: Results may be invalid if cell counts are <5</p> • May need to combine levels of a var

HW8 due Thu

Projects: be pro-active and self-led

- All groups have passed REB by now
- Presentations on 10Apr (2 weeks from now!)
- Remember your potential clients: what questions would they like answered?
- Tell a story/narrative in your presentation

Email me your preferences for presentation slot

