
CMPT 231: Data StructuresCMPT 231: Data Structures
and Algorithmsand Algorithms

cmpt231.seanho.com and myCourses

10 Sep 2013
CMPT231
Dr. Sean Ho
Trinity Western University

http://cmpt231.seanho.com/

CMPT231: algorithmic complexity 2CMPT231: algorithmic complexity

Outline for todayOutline for today
 Administrivia
 Algorithms and asymptotic complexity

● Example: Insertion sort
 Notation: Θ, O, Ω, o, ω

 Divide-and-conquer
● Example: Merge sort

 Recursion and recurrence relations
● Example: Maximum-subarray
● Example: Matrix multiply

 Naive method, divide-and-conquer method
 Strassen's method

CMPT231: algorithmic complexity 3CMPT231: algorithmic complexity

What is an algorithm?What is an algorithm?
 Well-defined process for solving a problem

● Input → Computation → Output
 May be expressed in any appropriate language

● Pseudocode, English, etc.
 May be implemented in many programming

languages
● Python, C, Java, etc.

 Computing science is not about
toolkits (Python, C++, Java, etc.)
but about problem solving

CMPT231: algorithmic complexity 4CMPT231: algorithmic complexity

Algorithmic complexityAlgorithmic complexity
 Number of machine instructions needed to execute

the algorithm
● Expressed as a function of size of input
● Constant factors are not important

 Depends on machine architecture
● e.g., GPUs can perform many parallel operations

very quickly
● We'll ignore this in our machine model

 “Running time” (speed) is a more complex topic
than just algorithmic complexity
● Cache/memory hierarchy plays a big role

CMPT231: algorithmic complexity 5CMPT231: algorithmic complexity

Basic machine modelBasic machine model
 The basic instruction set we assume roughly follows

most CPU architectures:
● Arithmetic: + - * /, < > ≠, left/right bitwise shift
● Data: load (read), store (assign), copy
● Control: if/else, for/while, functions
● Types: char, int, float (with fixed word size)

 Not arbitrarily large numbers
● Basic data structures: pointers, fixed-length

arrays (not Python lists / STL vectors)
 Each of these basic instructions is assumed to take

constant execution time

CMPT231: algorithmic complexity 6CMPT231: algorithmic complexity

Outline for todayOutline for today
 Administrivia
 Algorithms and asymptotic complexity

● Example: Insertion sort
 Notation: Θ, O, Ω, o, ω

 Divide-and-conquer
● Example: Merge sort

 Recursion and recurrence relations
● Example: Maximum-subarray
● Example: Matrix multiply

 Naive method, divide-and-conquer method
 Strassen's method

CMPT231: algorithmic complexity 7CMPT231: algorithmic complexity

Example task: sortingExample task: sorting
 Input: array of key-value pairs

● wlog, let keys be the integers 1 … n
● values (payload) can be any data,

staying attached to respective keys
 Output: array with elements sorted in increasing

order by key
● In-place: modify original array
● Out-of-place: return a sorted copy

 We'll focus on in-place sorting for now
 Standard fun: Python sort/ed(), C++/Java sort()

● How do they do it?

CMPT231: algorithmic complexity 8CMPT231: algorithmic complexity

Simple solution: insertion sortSimple solution: insertion sort
 e.g., a hand of cards
 insertion_sort(A, n):

for j = 2 to n:
key = A[j]
i = j – 1
while i > 0 and A[I] > key: # scoot over items

A[i + 1] = A[i]
i = i - 1

A[i + 1] = key
 Loop invariant: A[1 .. j-1] are in sorted order

● Check: before loop, during loop, after loop

Input 5 2 4 6 1 3

j=3: 2 5 4 6 1 3

j=4: 2 4 5 6 1 3

j=5: 2 4 5 6 1 3

j=6: 1 2 4 5 6 3

Out: 1 2 3 4 5 6

Input 5 2 4 6 1 3

j=3: 2 5 4 6 1 3

j=4: 2 4 5 6 1 3

j=5: 2 4 5 6 1 3

j=6: 1 2 4 5 6 3

Out: 1 2 3 4 5 6

CMPT231: algorithmic complexity 9CMPT231: algorithmic complexity

Insertion sort: complexityInsertion sort: complexity
 Let tj = # times the 'while' condition is checked
 insertion_sort(A, n):

for j = 2 to n: # cost c0 * n times
key = A[j] # c1 * n-1
i = j – 1 # c2 * n-1
while i > 0 and A[I] > key: # c3 * Σ2

n tj

A[i + 1] = A[i] # c4 * Σ2
n (tj - 1)

i = i – 1 # c5 * Σ2
n (tj - 1)

A[i + 1] = key # c6 * n-1
 Summation notation: Σ2

n tj = t2 + t3 + … + tn

CMPT231: algorithmic complexity 10CMPT231: algorithmic complexity

Insertion sort: worst-caseInsertion sort: worst-case
 Best-case is if input is already sorted:

● Still need to scan through, but all tj = 1
● → Linear in n: can express total complexity as

T(n) = a*n + b, for some constants a,b
 Worst case? Input in reverse-sorted order!

● 'while' loop is always max length: tj = j
● e.g., line 5: c4 * Σ2

n (tj – 1) = c4 * Σ2
n (j – 1)

= c4 * (n – 1)(n)/2 = (c4 / 2) * n2 – (½) * n
 Similarly for the other lines in the function

● → Quadratic in n
 Average case: random order: tj = j/2, quadratic

CMPT231: algorithmic complexity 11CMPT231: algorithmic complexity

ΘΘ() notation() notation
 The constants c1, c2, … may vary on different

platforms, but as n gets big, constants irrelevant
● Even the n term gets dominated by n2

 Insertion sort has complexity on the order of n2

● Notation: T(n) = Θ(n2) (“big theta”)
 Θ(1) means the algorithm runs in constant time

CMPT231: algorithmic complexity 12CMPT231: algorithmic complexity

Outline for todayOutline for today
 Administrivia
 Algorithms and asymptotic complexity

● Example: Insertion sort
 Notation: Θ, O, Ω, o, ω

 Divide-and-conquer
● Example: Merge sort

 Recursion and recurrence relations
● Example: Maximum-subarray
● Example: Matrix multiply

 Naive method, divide-and-conquer method
 Strassen's method

CMPT231: algorithmic complexity 13CMPT231: algorithmic complexity

Divide and conquerDivide and conquer
 Insertion sort is incremental:

● At each step, given that A[1 … j-1] is sorted,
insert A[j] such that A[1 … j] is sorted

 Another design strategy:
● Split up the task into smaller chunks
● When chunks are small enough, solve directly

(base case)
● Combine results and return up the stack

 Can implement via function recursion or loops
 Merge sort is an example, which ends up being

more efficient than insertion sort

CMPT231: algorithmic complexity 14CMPT231: algorithmic complexity

Divide and conquer: merge sortDivide and conquer: merge sort
 In English:

● Split array in half
 If array has only one element, we're done

● Recurse to sort each half
● Merge two sorted sub-arrays

 In pseudocode:
merge_sort(A, p, r):

if p < r:
q = floor((p + r) / 2)
merge_sort(A, p, q)
merge_sort(A, q+1, r)
merge(A, p, q, r) 4 7 2 6 1 4 7 3 5 2 64 7 2 6 1 4 7 3 5 2 6

2 4 7 1 4 6 3 5 7 2 62 4 7 1 4 6 3 5 7 2 6

1 2 4 4 6 7 2 3 5 6 71 2 4 4 6 7 2 3 5 6 7

1 2 2 3 4 4 5 6 6 7 71 2 2 3 4 4 5 6 6 7 7

4 7 2 1 6 4 3 7 5 2 64 7 2 1 6 4 3 7 5 2 6

CMPT231: algorithmic complexity 15CMPT231: algorithmic complexity

Linear-time mergeLinear-time merge
 How to do the merge?
 A[p .. q] and A[q+1 .. r] are each sorted, p ≤ q < r
 Make temp copies of each sub-array (left + right)

● Append “infinity” item to end of each copy
 Step through both sub-array copies:

● Compare first item from each sub-array
● Copy smaller one into main array

and move to next item in that list
1 2 2 3 4 41 2 2 3 4 4

1 2 4 4 6 7 ∞1 2 4 4 6 7 ∞ 2 3 5 6 7 ∞2 3 5 6 7 ∞

CMPT231: algorithmic complexity 16CMPT231: algorithmic complexity

Linear-time merge: pseudocodeLinear-time merge: pseudocode
 merge(A, p, q, r):

(n1, n2) = (q – p + 1, r – q)
new arrays: L[1 .. n1+1], R[1 .. n2+1]
for i in 1 .. n1: L[i] = A[p + i – 1]
for j in 1 .. n2: R[j] = A[q + j]
(L[n1+1], R[n2+1]) = (∞, ∞)
(i, j) = (1, 1)
for k in p .. r:

if L[i] ≤ R[j]:
A[k] = L[i]
i = i + 1

else:
A[k] = R[j]
j = j + 1

Complexity: Complexity: Θ(n)Θ(n)
where n = r – p + 1where n = r – p + 1
Complexity: Complexity: Θ(n)Θ(n)
where n = r – p + 1where n = r – p + 1

CMPT231: algorithmic complexity 17CMPT231: algorithmic complexity

Merge sort: complexityMerge sort: complexity
 How to analyse complexity of a recursive algo?
 Recurrence relation: base case + inductive step
 Base case: if n = 1, then T(n) = Θ(1)
 Inductive step: if n > 1,

then T(n) = 2 * T(n/2) + Θ(n)
cncn

cn/2cn/2 cn/2cn/2

cn/4cn/4cn/4cn/4 cn/4cn/4cn/4cn/4

cc cc cc cc cc cc cc cc cc cc

lg
(n

) le
ve

ls
lg

(n
) le

vels

Total complexity:
Θ(n lg(n))

Total complexity:
Θ(n lg(n))

CMPT231: algorithmic complexity 18CMPT231: algorithmic complexity

Asymptotic growthAsymptotic growth
 Behaviour “in the limit” (for big n)

 Def: f(n) ∊ Θ(g(n))
iff ∃ constants c

1
, c

2
, n

0
 such that

0 ≤ c
1
 g(n) ≤ f(n) ≤ c

2
 g(n)

for all n > n
0

● Θ(g(n)) is a set of functions

● f(n) is “sandwiched” between c
1
 g(n) and c

2
 g(n)

 “Big O”: O(g(n)) specifies an upper-bound

● e.g., Θ(n2) ⊂ O(n2) ⊂ O(n3)

 “Big Omega”: Ω(g(n)) specifies a lower-bound

● Other examples?

CMPT231: algorithmic complexity 19CMPT231: algorithmic complexity

Mathematical logicMathematical logic
 Some notation:

● ¬A, or !A: “not A”
 if A = “it is Tuesday”, then ¬A = “it is not Tuesday”

● A ⇒ B: “A implies B”; “if A, then B”
 The contrapositive of “A ⇒ B” is “¬B ⇒ ¬A”

➔ Contrapositive is equivalent to original statement
➔ “If Tues, then meatloaf” ⟺

“If not meatloaf, then not Tues”
 The converse of “A ⇒ B” is “¬A ⇒ ¬B”

➔ Converse is not equivalent to original statement
➔ converse: “If not Tues, then not meatloaf”

● ∀: “for all”: e.g., “x2 > x, ∀ x > 1”
● ∃: “there exists”: e.g., “∃ x s.t. x2 < x”

CMPT231: algorithmic complexity 20CMPT231: algorithmic complexity

Asymptotic short-handAsymptotic short-hand
 When Θ et al. are used on the right side of =,

● Means “there exists” f ∊ Θ(g)
● e.g., 2n2 + 3n = Θ(n2)

 When Θ et al. are used on the left side of =,
● Means “for all” f ∊ Θ(g)
● e.g., 4n2 + Θ(n lg(n)) = Θ(n2)

(this holds true for any function in Θ(n lg(n)))

CMPT231: algorithmic complexity 21CMPT231: algorithmic complexity

Asymptotic dominationAsymptotic domination
 “Little o”: f ∊ o(g) iff for all c > 0, there exists n0

such that 0 ≤ f(n) < cg(n) for all n > n0.
● i.e., as n → ∞, f(n) / g(n) → 0

 “Little omega”: f ∊ ω(g) iff
for all c > 0, there exists n0

such that 0 ≤ cg(n) < f(n) for all n > n0.
● i.e., as n → ∞, f(n) / g(n) → ∞

 E.g.: n1.9999 = o(n2), n2 / lg(n) = o(n2),
but n2 / 100000 ≠ o(n2),

 n2.000001 = ω(n2), n2 lg(n) = ω(n2)

CMPT231: algorithmic complexity 22CMPT231: algorithmic complexity

Useful math identitiesUseful math identities
 All logs are the same up to a constant factor:

● loga(n) = logb(n) / logb(a)
● So we just use lg = log2 for convenience

 Θ(1) ⊂ o(lg(n)) ⊂ o(n) ⊂ o(np>1) ⊂ o(pn)
 In fact, for all a>1 and b: nb / an → 0 as n → ∞.

● Hence, nb = o(an)
 n! = n(n-1)(n-2)...(2)(1)

Stirling's approximation:
● hence lg(n!) = Θ(n lg(n))

CMPT231: algorithmic complexity 23CMPT231: algorithmic complexity

Outline for todayOutline for today
 Administrivia
 Algorithms and asymptotic complexity

● Example: Insertion sort
 Notation: Θ, O, Ω, o, ω

 Divide-and-conquer
● Example: Merge sort

 Recursion and recurrence relations
● Example: Maximum-subarray
● Example: Matrix multiply

 Naive method, divide-and-conquer method
 Strassen's method

CMPT231: algorithmic complexity 24CMPT231: algorithmic complexity

Maximum subarrayMaximum subarray
 A more complex example of divide-and-conquer
 Input: array A[1..n] of numbers (some negative)
 Output: indices (i,j) that maximize sum(A[i..j])

● e.g., daily change in stock price:
when was optimal time to buy (i) & sell (j)?

ii jj

A[]A[]

Brute force: θ(n2)Brute force: θ(n2)

CMPT231: algorithmic complexity 25CMPT231: algorithmic complexity

Max subarray: algorithmMax subarray: algorithm
 Divide-and-conquer can do it in θ(n lg(n)):

● Split array in half
● Recursively find max subarray in each half

 (What's the base case?)
● Find max subarray which spans the midpoint
● Pick the best out of the 3 subarrays and return

 Finding max subarray spanning midpoint in θ(n):
● Decrement i from mid down to low to maximize

sum(A[i .. mid])
● Increment j from mid+1 up to high to maximize

sum(A[mid+1 .. j])
7 -2 -1 4 -5 3 7 2 -1 3 -47 -2 -1 4 -5 3 7 2 -1 3 -4

CMPT231: algorithmic complexity 26CMPT231: algorithmic complexity

Max subarray: complexityMax subarray: complexity
 max_subarray(A, low, mid, high): → T(n)

● Split → θ(1)
● Recurse on each half → 2T(n/2)
● Subarray spanning midpoint → θ(n)
● Return best of 3 → θ(1)

 Recurrence relation:
● Inductive step: T(n) = 2T(n/2) + θ(n)
● Base case: T(1) = θ(1)

 Same recurrence as merge sort: θ(n lg(n))
 Actually, max subarray can be done in θ(n)!

● See exercise #4.1-5

CMPT231: algorithmic complexity 27CMPT231: algorithmic complexity

Outline for todayOutline for today
 Administrivia
 Algorithms and asymptotic complexity

● Example: Insertion sort
 Notation: Θ, O, Ω, o, ω

 Divide-and-conquer
● Example: Merge sort

 Recursion and recurrence relations
● Example: Maximum-subarray
● Example: Matrix multiply

 Naive method, divide-and-conquer method
 Strassen's method

CMPT231: algorithmic complexity 28CMPT231: algorithmic complexity

Example: matrix multiplyExample: matrix multiply
 Input: two n x n matrices A[i,j] and B[i,j]
 Output: n x n matrix C = A * B:

● C[i,j] = Σn
k=1 (A[i,k] B[k,j])

 Simplest method:
for i in 1 .. n:

for j in 1 .. n:
for k in 1 .. n:

C[i,j] += A[i,k] * B[k,j]
● Complexity? Can we do better?

CMPT231: algorithmic complexity 29CMPT231: algorithmic complexity

Basic divide-conquer algorithmBasic divide-conquer algorithm
 Divide-and-conquer: split matrices into 4 parts:

● (assume n
is a power of 2)

 Recurse 8 times to get products of sub-matrices
 Add and combine into result:

● C11 = A11 * B11 + A12 * B21,
● C12 = A11 * B12 + A12 * B22,
● C21 = A21 * B11 + A22 * B21,
● C22 = A21 * B12 + A22 * B22.

 Base case?
 (Generalise to when n is not a power of 2?)

CMPT231: algorithmic complexity 30CMPT231: algorithmic complexity

Basic div-conq: complexityBasic div-conq: complexity
 Split of matrices can be constant time if done using

indices rather than copying matrices
 Each recursive call takes T(n/2); do 8 of them
 Combining results takes Θ(n2) due to addition (each

entry in C[] requires one addition)
 ⇒ Recurrence relation: T(n) = 8T(n/2) + Θ(n2)

● Base case: T(1) = Θ(1)
 Doing 8 recursive calls kills us here;

total complexity is still Θ(n3),
no better than brute-force

 If we can save even 1 recursive call,
even at the expense of o(n2) of work, it will help

CMPT231: algorithmic complexity 31CMPT231: algorithmic complexity

Strassen's methodStrassen's method
 Make 10 sums of submatrices: S1 = B12 – B22,

S2 = A11 + A12, S3 = A21 + A22, S4 = B21 – B11,
S5 = A11 + A22, S6 = B11 + B22, S7 = A12 – A22,
S8 = B21 + B22, S9 = A11 – A21, S10 = B11 + B12.

 Recurse 7 times to get 7 products: P1 = A11 * S1,
P2 = S2 * B22, P3 = S3 * B11, P4 = A22 * S4,
P5 = S5 * S6, P6 = S7 * S8, P7 = S9 * S10.

 Add products and combine for result:
C11 = P5 + P4 – P2 + P6, C12 = P1 + P2,
C21 = P3 + P4, C22 = P5 + P1 – P3 – P7.

CMPT231: algorithmic complexity 32CMPT231: algorithmic complexity

Strassen: complexityStrassen: complexity
 Even though more sums are done, they are all still

Θ(n2) and so don't change asymptotic cplxity
● Although for smaller n it may not be worth it

 Recurrence: T(n) = 7T(n/2) + Θ(n2)
● T(1) = Θ(1)

 Solution to the recurrence is T(n) = Θ(nlg7)
 In general, for T(n) = a T(n/b) + Θ(f(n)):

● if f(n) is smaller than O(nlog_b(a)):
 Then T(n) = Θ(nlog_b(a))
 Leaves dominate recursion tree

 One case of the “master theorem”

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

