CMPT 231: Data Structures and Algorithms

cmpt231.seanho.com and myCourses

10 Sep 2013 CMPT231 Dr. Sean Ho Trinity Western University

Outline for today

Administrivia Algorithms and asymptotic complexity • Example: Insertion sort • Notation: Θ , O, Ω , o, ω Divide-and-conquer • Example: Merge sort Recursion and recurrence relations • Example: Maximum-subarray • Example: Matrix multiply Naive method, divide-and-conquer method Strassen's method **CMPT231: algorithmic complexity**

What is an algorithm?

Well-defined process for solving a problem

 Input → Computation → Output

 May be expressed in any appropriate language

 Pseudocode, English, etc.

 May be implemented in many programming languages

 Python, C, Java, etc.

Computing science is not about toolkits (Python, C++, Java, etc.) but about problem solving

Algorithmic complexity

Number of machine instructions needed to execute the algorithm

- Expressed as a function of size of input
- Constant factors are not important
- Depends on machine architecture
 - e.g., GPUs can perform many parallel operations very quickly
 - We'll ignore this in our machine model
- "Running time" (speed) is a more complex topic than just algorithmic complexity

Cache/memory hierarchy plays a big role

Basic machine model

The basic instruction set we assume roughly follows most CPU architectures:

• Arithmetic: + - * /, <> ≠, left/right bitwise shift

• Data: load (read), store (assign), copy

- Control: if/else, for/while, functions
- Types: char, int, float (with fixed word size)
 - Not arbitrarily large numbers
- Basic data structures: pointers, fixed-length arrays (not Python lists / STL vectors)
- Each of these basic instructions is assumed to take constant execution time

Outline for today

Administrivia Algorithms and asymptotic complexity • Example: Insertion sort • Notation: Θ , O, Ω , o, ω Divide-and-conquer • Example: Merge sort Recursion and recurrence relations • Example: Maximum-subarray • Example: Matrix multiply Naive method, divide-and-conquer method Strassen's method **CMPT231: algorithmic complexity**

Example task: sorting

Input: array of key-value pairs • wlog, let keys be the integers 1 ... n values (payload) can be any data, staying attached to respective keys Output: array with elements sorted in increasing order by key In-place: modify original array Out-of-place: return a sorted copy We'll focus on in-place sorting for now Standard fun: Python sort/ed(), C++/Java sort() • How do they do it? CMPT231: algorithmic complexity

Simple solution: insertion sort

Input e.g., a hand of cards **i=3**: insertion_sort(A, n): **i**=4: for $\mathbf{i} = 2$ to n: **j=5**: **j=6**: key = A[i]i = i - 1**Out:** while i > 0 and A[I] > key: # scoot over items A[i + 1] = A[i]i = i - 1A[i + 1] = keyLoop invariant: A[1 .. j-1] are in sorted order Check: before loop, during loop, after loop

Insertion sort: complexity

Let t_j = # times the 'while' condition is checked
 insertion_sort(A, n):

cost c0 * n times for = 2 to n: key = A[j]# c1 * n-1 i = j - 1# c2 * n-1 while i > 0 and A[I] > key: # c3 * Σ_2^n t # c4 * Σ_2^n (t_i - 1) A[i + 1] = A[i]i = i - 1# c5 * Σ_2^n (t_i - 1) A[i + 1] = key# c6 * n-1 Summation notation: $\Sigma_2^n t_i = t_2 + t_3 + \dots + t_n$

Insertion sort: worst-case

Best-case is if input is already sorted:
 Still need to scan through, but all t_i = 1

• \rightarrow Linear in n: can express total complexity as T(n) = $a^*n + b$, for some constants a,b

Worst case? Input in reverse-sorted order!

• 'while' loop is always max length: t_i = j

- e.g., line 5: c4 * Σ_2^n (t_j 1) = c4 * Σ_2^n (j 1)
 - $= c4 * (n 1)(n)/2 = (c4 / 2) * n^2 (\frac{1}{2}) * n^2$

Similarly for the other lines in the function

• \rightarrow Quadratic in n

CMPT231: algorithmic complexity

O() notation

The constants c1, c2, ... may vary on different platforms, but as n gets big, constants irrelevant
 Even the n term gets dominated by n²
 Insertion sort has complexity on the order of n²
 Notation: T(n) = Θ(n²) ("big theta")
 Θ(1) means the algorithm runs in constant time

Outline for today

Administrivia Algorithms and asymptotic complexity • Example: Insertion sort • Notation: Θ , O, Ω , o, ω Divide-and-conquer • Example: Merge sort Recursion and recurrence relations • Example: Maximum-subarray • Example: Matrix multiply Naive method, divide-and-conquer method Strassen's method **CMPT231: algorithmic complexity**

Divide and conquer

Insertion sort is incremental:

 At each step, given that A[1 ... j-1] is sorted, insert A[j] such that A[1 ... j] is sorted

Another design strategy:

- Split up the task into smaller chunks
- When chunks are small enough, solve directly (base case)
- Combine results and return up the stack

Can implement via function recursion or loops
 Merge sort is an example, which ends up being more efficient than insertion sort

Divide and conquer: merge sort

In English:

- Split array in half
 - If array has only one element, we're done
- Recurse to sort each half
- Merge two sorted sub-arrays

In pseudocode:

merge_sort(A, p, r):

if p < r: q = floor((p + r) / 2) merge_sort(A, p, q) merge_sort(A, q+1, r) merge(A, p, q, r)

Linear-time merge

How to do the merge? \blacksquare A[p .. q] and A[q+1 .. r] are each sorted, p \leq q < r Make temp copies of each sub-array (left + right) • Append "infinity" item to end of each copy Step through both sub-array copies: Compare first item from each sub-array Copy smaller one into main array and move to next item in that list 2 3 4 4 2 4 6 2 3 5 6 7 4 ∞ ∞

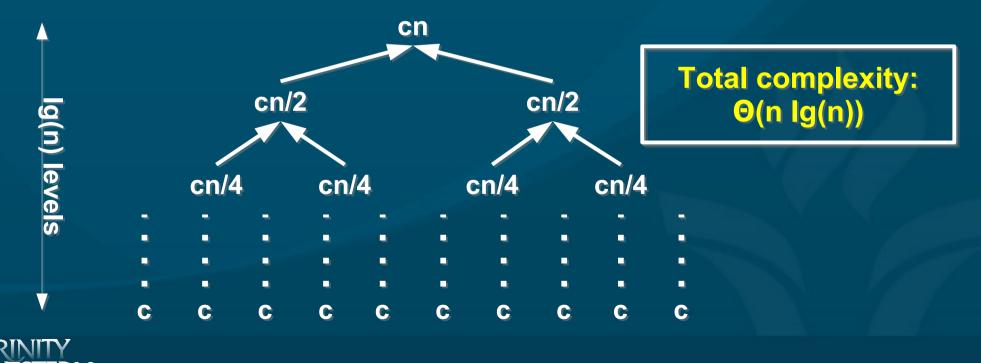
CMPT231: algorithmic complexity

Linear-time merge: pseudocode

```
merge(A, p, q, r):
     (n1, n2) = (q - p + 1, r - q)
     new arrays: L[1..n]+1], R[1..n2+1]
     for i in 1 .. n1: L[i] = A[p + i - 1]
     for j in 1 .. n2: R[j] = A[q + j]
     (L[n]+1], R[n2+1]) = (\infty, \infty)
     (i, j) = (1, 1)
                                           Complexity: \Theta(n)
     for k in p ... r:
                                           where n = r - p + 1
         if L[i] \leq R[j]:
            A[k] = L[i]
            i = i + 1
         else:
            A[k] = R[j]
            j = j + 1
                   CMPT231: algorithmic complexity
                                                                       16
```

Merge sort: complexity

How to analyse complexity of a recursive algo?
Recurrence relation: base case + inductive step
Base case: if n = 1, then T(n) = Θ(1)
Inductive step: if n > 1, then T(n) = 2 * T(n/2) + Θ(n)



Asymptotic growth

Behaviour "in the limit" (for big n) Def: $f(n) \in \Theta(g(n))$ iff \exists constants c_1 , c_2 , n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n > n_0$ • $\Theta(g(n))$ is a set of functions • f(n) is "sandwiched" between $c_1 g(n)$ and $c_2 g(n)$ "Big O": O(g(n)) specifies an upper-bound • e.g., $\Theta(n^2) \subset O(n^2) \subset O(n^3)$ • "Big Omega": $\Omega(g(n))$ specifies a lower-bound • Other examples?

 $c_2g(n)$

f(n)

 $c_1g(n)$

 n_0

Mathematical logic

Some notation:

- ¬A, or !A: "not A"
 - if A = "it is Tuesday", then $\neg A =$ "it is not Tuesday"
- $A \Rightarrow B$: "A implies B"; "if A, then B"
 - The contrapositive of "A \Rightarrow B" is " \neg B \Rightarrow \neg A"
 - Contrapositive is equivalent to original statement
 - → "If Tues, then meatloaf" ⇔
 "If not meatloaf, then not Tues"
 - The converse of "A \Rightarrow B" is " \neg A \Rightarrow \neg B"
 - Converse is not equivalent to original statement
 - converse: "If not Tues, then not meatloaf"

"there exists": e.g., " $\exists x \text{ s.t. } x^2 < x$ " CMPT231: algorithmic complexity

• \forall : "for all": e.g., "x² > x, \forall x > 1"

19

Asymptotic short-hand

• When Θ et al. are used on the right side of =,

- Means "there exists" $f \in \Theta(g)$
- e.g., $2n^2 + 3n = \Theta(n^2)$

• When Θ et al. are used on the left side of =,

- Means "for all" $f \in \Theta(g)$
- e.g., $4n^2 + \Theta(n \lg(n)) = \Theta(n^2)$ (this holds true for any function in $\Theta(n \lg(n))$)

Asymptotic domination

• "Little o": f ϵ o(g) iff for all c > 0, there exists n_0 such that $0 \leq f(n) < cg(n)$ for all $n > n_0$. • i.e., as $n \to \infty$, $f(n) / g(n) \to 0$ • "Little omega": $f \in \omega(g)$ iff for all c > 0, there exists n_0 such that $0 \leq cg(n) < f(n)$ for all $n > n_0$. • i.e., as $n \to \infty$, $f(n) / g(n) \to \infty$ • E.g.: $n^{1.9999} = o(n^2)$, $n^{2} / lg(n) = o(n^{2}),$ but $n^2 / 100000 \neq o(n^2)$, = n^{2.000001} = $\omega(n^2)$, $n^{2} lq(n) = \omega(n^{2})$

Useful math identities

All logs are the same up to a constant factor: • $\log_{a}(n) = \log_{b}(n) / \log_{b}(a)$ • So we just use $|\mathbf{g}| = |\log_2$ for convenience $\Box \Theta(1) \subset O(|q(n)) \subset O(n) \subset O(n^{p>1}) \subset O(p^n)$ In fact, for all a>1 and b: $n^b / a^n \rightarrow 0$ as $n \rightarrow \infty$. • Hence, $n^b = o(a^n)$ | n | = n(n-1)(n-2)...(2)(1) $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right) ,$ Stirling's approximation: • hence $lg(n!) = \Theta(n lg(n))$

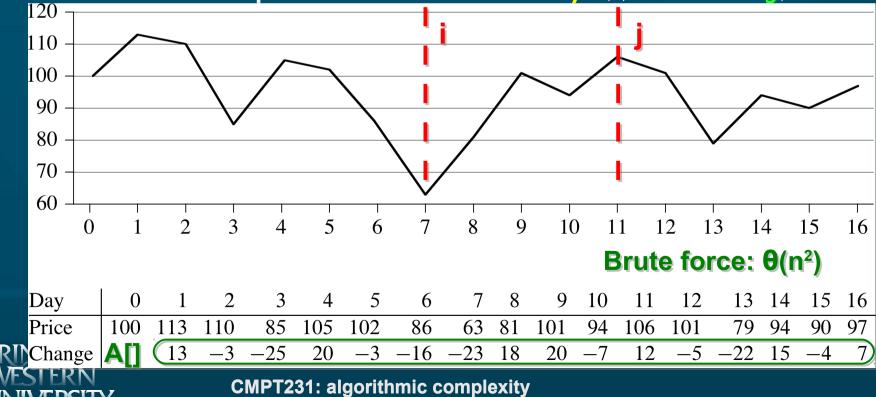
Outline for today

Administrivia Algorithms and asymptotic complexity • Example: Insertion sort • Notation: Θ , O, Ω , o, ω Divide-and-conquer • Example: Merge sort Recursion and recurrence relations • Example: Maximum-subarray • Example: Matrix multiply Naive method, divide-and-conquer method Strassen's method **CMPT231: algorithmic complexity**

Maximum subarray

A more complex example of divide-and-conquer
 Input: array A[1...n] of numbers (some negative)
 Output: indices (i,j) that maximize sum(A[i..j])

• e.g., daily change in stock price: when was optimal time to buy (i) & sell (j)?



Max subarray: algorithm

Divide-and-conquer can do it in θ(n lg(n)):

- Split array in half
- Recursively find max subarray in each half
 - (What's the base case?)
- Find max subarray which spans the midpoint
- Pick the best out of the 3 subarrays and return

Finding max subarray spanning midpoint in $\theta(n)$:

 Decrement i from mid down to low to maximize sum(A[i .. mid])

Increment j from mid+1 up to high to maximize sum(A[mid+1 .. j])

7
-2
-1
4
-5
3
7
2
-1
3
-4

Max subarray: complexity

max_subarray(A, low, mid, high):

- Split
- Recurse on each half
- Subarray spanning midpoint
- Return best of 3
- Recurrence relation:
 - Inductive step: $T(n) = 2T(n/2) + \theta(n)$
 - Base case: $T(1) = \theta(1)$

ee exercise #4.1–5

Same recurrence as merge sort: θ(n lg(n))

Actually, max subarray can be done in $\theta(n)$!

algorithmic complexity

 $\rightarrow T(n)$ $\rightarrow \theta(1)$ $\rightarrow 2T(n/2)$ $\rightarrow \theta(n)$ $\rightarrow \theta(1)$

Outline for today

Administrivia Algorithms and asymptotic complexity • Example: Insertion sort • Notation: Θ , O, Ω , o, ω Divide-and-conquer • Example: Merge sort Recursion and recurrence relations • Example: Maximum-subarray • Example: Matrix multiply Naive method, divide-and-conquer method Strassen's method **CMPT231: algorithmic complexity**

Example: matrix multiply

Input: two n x n matrices A[i,j] and B[i,j] • Output: $n \times n$ matrix C = A * B: • $C[i,j] = \Sigma_{k-1}^{n} (A[i,k] B[k,j])$ Simplest method: $\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$ for i in 1 ... n: for j in 1 .. n: for k in 1 ... n: C[i,j] += A[i,k] * B[k,j]Complexity? Can we do better?

CMPT231: algorithmic complexity

Basic divide-conquer algorithm

Divide-and-conquer: split matrices into 4 parts:

 (assume n is a power of 2)

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Recurse 8 times to get products of sub-matrices
 Add and combine into result:

•
$$C_{11} = A_{11} * B_{11} + A_{12} * B_{21}$$
,
• $C_{12} = A_{11} * B_{12} + A_{12} * B_{22}$,
• $C_{12} = A_{11} * B_{12} + A_{12} * B_{22}$,

•
$$C_{21} = A_{21} * B_{11} + A_{22} * B_{21}$$

•
$$C_{22} = A_{21} * B_{12} + A_{22} * B_{22}$$

Base case? Ceneralise to when on his choir of 2?)

Basic div-conq: complexity

- Split of matrices can be constant time if done using indices rather than copying matrices
- Each recursive call takes T(n/2); do 8 of them
- Combining results takes O(n²) due to addition (each entry in C[] requires one addition)
- ⇒ Recurrence relation: $T(n) = 8T(n/2) + \Theta(n^2)$
 - Base case: $T(1) = \Theta(1)$
- Doing 8 recursive calls kills us here; total complexity is still O(n³), no better than brute-force

If we can save even 1 recursive call, reven at the expense of o(n²) of work, it will help WESTERN CMPT231: algorithmic complexity

Strassen's method

Make 10 sums of submatrices: $S_1 = B_{12} - B_{22}$ $S_{2} = A_{11} + A_{12}$ $S_{2} = A_{21} + A_{22}$ $S_{4} = B_{21} - B_{11}$ $S_{6} = B_{11} + B_{22}$ $S_{5} = A_{11} + A_{22},$ $S_{7} = A_{12} - A_{22},$ $S_{8} = B_{21} + B_{22}$ $S_{10} = B_{11} + B_{12}$ $S_{0} = A_{11} - A_{21},$ $P_1 = A_{11} * S_1,$ Recurse 7 times to get 7 products: $P_{2} = S_{2} * B_{22},$ $P_{3} = S_{3} * B_{11},$ $\mathsf{P}_{\scriptscriptstyle A} = \mathsf{A}_{\scriptscriptstyle 22} * \mathsf{S}_{\scriptscriptstyle A},$ $\mathsf{P}_{\varsigma} = \mathsf{S}_{\varsigma} * \mathsf{S}_{\varsigma},$ $P_{7} = S_{0} * S_{10}$ $P_{s} = S_{7} * S_{8},$ Add products and combine for result: $C_{11} = P_5 + P_4 - P_2 + P_6$ $C_{12} = P_1 + P_2,$ $C_{22} = P_5 + P_1 - P_3 - P_7$ $C_{21} = P_3 + P_4$

CMPT231: algorithmic complexity

Strassen: complexity

Even though more sums are done, they are all still $\Theta(n^2)$ and so don't change asymptotic cplxity • Although for smaller n it may not be worth it **Recurrence:** $T(n) = 7T(n/2) + \Theta(n^2)$ $\bullet \overline{\mathsf{T}(1)} = \Theta(1)$ Solution to the recurrence is $T(n) = \Theta(n^{\log 7})$ In general, for $T(n) = a T(n/b) + \Theta(f(n))$: • if f(n) is smaller than $O(n^{\log_b(a)})$: • Then $T(n) = \Theta(n^{\log_b(a)})$ Leaves dominate recursion tree One case of the "master theorem" CMPT231: algorithmic complexity