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What is an algorithm?What is an algorithm?
 Well-defined process for solving a problem

● Input → Computation → Output
 May be expressed in any appropriate language

● Pseudocode, English, etc.
 May be implemented in many programming 

languages
● Python, C, Java, etc.

 Computing science is not about
toolkits (Python, C++, Java, etc.)
but about problem solving



CMPT231: algorithmic complexity 4CMPT231: algorithmic complexity

Algorithmic complexityAlgorithmic complexity
 Number of machine instructions needed to execute 

the algorithm
● Expressed as a function of size of input
● Constant factors are not important

 Depends on machine architecture
● e.g., GPUs can perform many parallel operations 

very quickly
● We'll ignore this in our machine model

 “Running time” (speed) is a more complex topic 
than just algorithmic complexity
● Cache/memory hierarchy plays a big role
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Basic machine modelBasic machine model
 The basic instruction set we assume roughly follows 

most CPU architectures:
● Arithmetic: + - * /, < > ≠, left/right bitwise shift
● Data: load (read), store (assign), copy
● Control: if/else, for/while, functions
● Types: char, int, float (with fixed word size)

 Not arbitrarily large numbers
● Basic data structures: pointers, fixed-length 

arrays (not Python lists / STL vectors)
 Each of these basic instructions is assumed to take 

constant execution time
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Example task: sortingExample task: sorting
 Input: array of key-value pairs

● wlog, let keys be the integers 1 … n
● values (payload) can be any data,

staying attached to respective keys
 Output: array with elements sorted in increasing 

order by key
● In-place: modify original array
● Out-of-place: return a sorted copy

 We'll focus on in-place sorting for now
 Standard fun: Python sort/ed(), C++/Java sort()

● How do they do it?
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Simple solution: insertion sortSimple solution: insertion sort
 e.g., a hand of cards
 insertion_sort(A, n):

for j = 2 to n:
key = A[ j ]
i = j – 1
while i > 0 and A[ I ] > key: # scoot over items

A[ i + 1 ] = A[ i ]
i = i - 1

A[ i + 1 ] = key
 Loop invariant: A[1 .. j-1] are in sorted order

● Check: before loop, during loop, after loop

Input 5 2 4 6 1 3

j=3: 2 5 4 6 1 3

j=4: 2 4 5 6 1 3

j=5: 2 4 5 6 1 3

j=6: 1 2 4 5 6 3

Out: 1 2 3 4 5 6

Input 5 2 4 6 1 3

j=3: 2 5 4 6 1 3

j=4: 2 4 5 6 1 3

j=5: 2 4 5 6 1 3

j=6: 1 2 4 5 6 3

Out: 1 2 3 4 5 6
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Insertion sort: complexityInsertion sort: complexity
 Let tj = # times the 'while' condition is checked
 insertion_sort(A, n):

for j = 2 to n: # cost c0 * n times
key = A[ j ] # c1 * n-1
i = j – 1 # c2 * n-1
while i > 0 and A[ I ] > key: # c3 * Σ2

n tj

A[ i + 1 ] = A[ i ] # c4 *  Σ2
n (tj - 1)

i = i – 1 # c5 *  Σ2
n (tj - 1)

A[ i + 1 ] = key # c6 * n-1
 Summation notation: Σ2

n tj = t2 + t3 + … + tn
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Insertion sort: worst-caseInsertion sort: worst-case
 Best-case is if input is already sorted:

● Still need to scan through, but all tj = 1
● → Linear in n: can express total complexity as

T(n) = a*n + b, for some constants a,b
 Worst case? Input in reverse-sorted order!

● 'while' loop is always max length: tj = j
● e.g., line 5: c4 *  Σ2

n (tj – 1) = c4 *  Σ2
n (j – 1)

= c4 * (n – 1)(n)/2 = (c4 / 2) * n2 – (½) * n
 Similarly for the other lines in the function

● → Quadratic in n
 Average case: random order: tj = j/2, quadratic
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ΘΘ() notation() notation
 The constants c1, c2, … may vary on different 

platforms, but as n gets big, constants irrelevant
● Even the n term gets dominated by n2

 Insertion sort has complexity on the order of n2

● Notation: T(n) = Θ(n2) (“big theta”)
 Θ(1) means the algorithm runs in constant time
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Divide and conquerDivide and conquer
 Insertion sort is incremental:

● At each step, given that A[1 … j-1] is sorted,
insert A[j] such that A[1 … j] is sorted

 Another design strategy:
● Split up the task into smaller chunks
● When chunks are small enough, solve directly 

(base case)
● Combine results and return up the stack

 Can implement via function recursion or loops
 Merge sort is an example, which ends up being 

more efficient than insertion sort
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Divide and conquer: merge sortDivide and conquer: merge sort
 In English:

● Split array in half
 If array has only one element, we're done

● Recurse to sort each half
● Merge two sorted sub-arrays

 In pseudocode:
merge_sort(A, p, r):

if p < r:
q = floor( (p + r) / 2 )
merge_sort(A, p, q)
merge_sort(A, q+1, r)
merge(A, p, q, r) 4 7 2 6 1 4 7 3 5 2 64 7 2 6 1 4 7 3 5 2 6

2 4 7 1 4 6 3 5 7 2 62 4 7 1 4 6 3 5 7 2 6

1 2 4 4 6 7 2 3 5 6 71 2 4 4 6 7 2 3 5 6 7

1 2 2 3 4 4 5 6 6 7 71 2 2 3 4 4 5 6 6 7 7

4 7 2 1 6 4 3 7 5 2 64 7 2 1 6 4 3 7 5 2 6
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Linear-time mergeLinear-time merge
 How to do the merge?
 A[p .. q] and A[q+1 .. r] are each sorted, p ≤ q < r
 Make temp copies of each sub-array (left + right)

● Append “infinity” item to end of each copy
 Step through both sub-array copies:

● Compare first item from each sub-array
● Copy smaller one into main array

and move to next item in that list
1 2 2 3 4 41 2 2 3 4 4

1 2 4 4 6 7 ∞1 2 4 4 6 7 ∞ 2 3 5 6 7 ∞2 3 5 6 7 ∞
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Linear-time merge: pseudocodeLinear-time merge: pseudocode
 merge(A, p, q, r):

( n1, n2 ) = ( q – p + 1, r – q )
new arrays: L[ 1 .. n1+1 ], R[ 1 .. n2+1 ]
for i in 1 .. n1: L[ i ] = A[ p + i – 1 ]
for j in 1 .. n2: R[ j ] = A[ q + j ]
( L[ n1+1 ], R[ n2+1 ] ) = ( ∞, ∞ )
( i, j ) = ( 1, 1 )
for k in p .. r:

if L[ i ] ≤ R[ j ]:
A[ k ] = L[ i ]
i = i + 1

else:
A[ k ] = R[ j ]
j = j + 1

Complexity: Complexity: Θ(n)Θ(n)
where n = r – p + 1where n = r – p + 1
Complexity: Complexity: Θ(n)Θ(n)
where n = r – p + 1where n = r – p + 1
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Merge sort: complexityMerge sort: complexity
 How to analyse complexity of a recursive algo?
 Recurrence relation: base case + inductive step
 Base case: if n = 1, then T(n) = Θ(1)
 Inductive step: if n > 1,

then T(n) = 2 * T( n/2 ) + Θ(n)
cncn

cn/2cn/2 cn/2cn/2

cn/4cn/4cn/4cn/4 cn/4cn/4cn/4cn/4

cc cc cc cc cc cc cc cc cc cc

lg
(n

) le
ve

ls
lg

(n
) le

vels

Total complexity:
Θ(n lg(n))

Total complexity:
Θ(n lg(n))
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Asymptotic growthAsymptotic growth
 Behaviour “in the limit” (for big n)

 Def: f(n)  ∊ Θ( g(n) )
iff ∃ constants c

1
, c

2
, n

0
 such that

0 ≤ c
1
 g(n) ≤ f(n) ≤ c

2
 g(n)

for all n > n
0

● Θ( g(n) ) is a set of functions

● f(n) is “sandwiched” between c
1
 g(n) and c

2
 g(n)

 “Big O”: O( g(n) ) specifies an upper-bound

● e.g., Θ( n2 ) ⊂ O( n2 ) ⊂ O( n3 )

 “Big Omega”: Ω( g(n) ) specifies a lower-bound

● Other examples?



CMPT231: algorithmic complexity 19CMPT231: algorithmic complexity

Mathematical logicMathematical logic
 Some notation:

● ¬A, or !A: “not A”
 if A = “it is Tuesday”, then ¬A = “it is not Tuesday”

● A ⇒ B: “A implies B”; “if A, then B”
 The contrapositive of “A ⇒ B” is “¬B ⇒ ¬A”

➔ Contrapositive is equivalent to original statement
➔ “If Tues, then meatloaf” ⟺

“If not meatloaf, then not Tues”
 The converse of “A ⇒ B” is “¬A ⇒ ¬B”

➔ Converse is not equivalent to original statement
➔ converse: “If not Tues, then not meatloaf”

● ∀: “for all”: e.g., “x2 > x, ∀ x > 1”
● ∃: “there exists”: e.g., “∃ x s.t. x2 < x”
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Asymptotic short-handAsymptotic short-hand
 When Θ et al. are used on the right side of =,

● Means “there exists” f  ∊ Θ( g )
● e.g., 2n2 + 3n = Θ(n2)

 When Θ et al. are used on the left side of =,
● Means “for all” f  ∊ Θ( g )
● e.g., 4n2 + Θ(n lg(n)) = Θ(n2)

(this holds true for any function in Θ(n lg(n)))
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Asymptotic dominationAsymptotic domination
 “Little o”: f ∊ o( g ) iff for all c > 0, there exists n0

such that 0 ≤ f(n) < cg(n) for all n > n0.
● i.e., as n → ∞, f(n) / g(n) → 0

 “Little omega”: f ∊ ω( g ) iff
for all c > 0, there exists n0

such that 0 ≤ cg(n) < f(n) for all n > n0.
● i.e., as n → ∞, f(n) / g(n) → ∞

 E.g.: n1.9999 = o(n2), n2 / lg(n) = o(n2),
but n2 / 100000 ≠ o(n2),

 n2.000001 = ω(n2), n2 lg(n) = ω(n2)
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Useful math identitiesUseful math identities
 All logs are the same up to a constant factor:

● loga(n) = logb(n) / logb(a)
● So we just use lg = log2 for convenience

 Θ(1) ⊂ o(lg(n)) ⊂ o(n) ⊂ o(np>1) ⊂ o(pn)
 In fact, for all a>1 and b: nb / an → 0 as n → ∞.

● Hence, nb = o(an)
 n! = n(n-1)(n-2)...(2)(1)

Stirling's approximation:
● hence lg(n!) = Θ(n lg(n))



CMPT231: algorithmic complexity 23CMPT231: algorithmic complexity

Outline for todayOutline for today
 Administrivia
 Algorithms and asymptotic complexity

● Example: Insertion sort
 Notation: Θ, O, Ω, o, ω

 Divide-and-conquer
● Example: Merge sort

 Recursion and recurrence relations
● Example: Maximum-subarray
● Example: Matrix multiply

 Naive method, divide-and-conquer method
 Strassen's method



CMPT231: algorithmic complexity 24CMPT231: algorithmic complexity

Maximum subarrayMaximum subarray
 A more complex example of divide-and-conquer
 Input: array A[1..n] of numbers (some negative)
 Output: indices (i,j) that maximize sum( A[i..j] )

● e.g., daily change in stock price:
when was optimal time to buy (i) & sell (j)?

ii jj

A[]A[]

Brute force: θ(n2)Brute force: θ(n2)
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Max subarray: algorithmMax subarray: algorithm
 Divide-and-conquer can do it in θ(n lg(n)):

● Split array in half
● Recursively find max subarray in each half

 (What's the base case?)
● Find max subarray which spans the midpoint
● Pick the best out of the 3 subarrays and return

 Finding max subarray spanning midpoint in θ(n):
● Decrement i from mid down to low to maximize 

sum( A[i .. mid] )
● Increment j from mid+1 up to high to maximize 

sum( A[mid+1 .. j] )
7 -2 -1 4 -5 3 7 2 -1 3 -47 -2 -1 4 -5 3 7 2 -1 3 -4
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Max subarray: complexityMax subarray: complexity
 max_subarray(A, low, mid, high): → T(n)

● Split → θ(1)
● Recurse on each half → 2T(n/2)
● Subarray spanning midpoint → θ(n)
● Return best of 3 → θ(1)

 Recurrence relation:
● Inductive step: T(n) = 2T(n/2) + θ(n)
● Base case: T(1) = θ(1)

 Same recurrence as merge sort: θ(n lg(n))
 Actually, max subarray can be done in θ(n)!

● See exercise #4.1-5
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Example: matrix multiplyExample: matrix multiply
 Input: two n x n matrices A[i,j] and B[i,j]
 Output: n x n matrix C = A * B:

● C[i,j] = Σn
k=1 ( A[i,k] B[k,j] )

 Simplest method:
for i in 1 .. n:

for j in 1 .. n:
for k in 1 .. n:

C[i,j] += A[i,k] * B[k,j]
● Complexity? Can we do better?



CMPT231: algorithmic complexity 29CMPT231: algorithmic complexity

Basic divide-conquer algorithmBasic divide-conquer algorithm
 Divide-and-conquer: split matrices into 4 parts:

● (assume n
is a power of 2)

 Recurse 8 times to get products of sub-matrices
 Add and combine into result:

● C11 = A11 * B11 + A12 * B21,
● C12 = A11 * B12 + A12 * B22,
● C21 = A21 * B11 + A22 * B21,
● C22 = A21 * B12 + A22 * B22.

 Base case?
 (Generalise to when n is not a power of 2?)
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Basic div-conq: complexityBasic div-conq: complexity
 Split of matrices can be constant time if done using 

indices rather than copying matrices
 Each recursive call takes T(n/2); do 8 of them
 Combining results takes Θ(n2) due to addition (each 

entry in C[] requires one addition)
 ⇒ Recurrence relation: T(n) = 8T(n/2) + Θ(n2)

● Base case: T(1) = Θ(1)
 Doing 8 recursive calls kills us here;

total complexity is still Θ(n3),
no better than brute-force

 If we can save even 1 recursive call,
even at the expense of o(n2) of work, it will help
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Strassen's methodStrassen's method
 Make 10 sums of submatrices: S1 = B12 – B22,

S2 = A11 + A12, S3 = A21 + A22, S4 = B21 – B11,
S5 = A11 + A22, S6 = B11 + B22, S7 = A12 – A22,
S8 = B21 + B22, S9 = A11 – A21, S10 = B11 + B12.

 Recurse 7 times to get 7 products: P1 = A11 * S1,
P2 = S2 * B22, P3 = S3 * B11, P4 = A22 * S4,
P5 = S5 * S6, P6 = S7 * S8, P7 = S9 * S10.

 Add products and combine for result:
C11 = P5 + P4 – P2 + P6, C12 = P1 + P2,
C21 = P3 + P4, C22 = P5 + P1 – P3 – P7.
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Strassen: complexityStrassen: complexity
 Even though more sums are done, they are all still 

Θ(n2) and so don't change asymptotic cplxity
● Although for smaller n it may not be worth it

 Recurrence: T(n) = 7T(n/2) + Θ(n2)
● T(1) = Θ(1)

 Solution to the recurrence is T(n) = Θ(nlg7)
 In general, for T(n) = a T( n/b ) + Θ( f(n) ):

● if f(n) is smaller than O(nlog_b(a)):
 Then T(n) = Θ(nlog_b(a))
 Leaves dominate recursion tree

 One case of the “master theorem”
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