
Ch4: Proofs & RecurrencesCh4: Proofs & Recurrences
Ch6: Heap-sortCh6: Heap-sort

24 Sep 2013
CMPT231
Dr. Sean Ho
Trinity Western University

24 Sep 2013CMPT231: proofs; heapsort 2CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Outline for todayOutline for today

 Review of discrete math:
● Monotonicity, limits, iterated funs, Fibonacci
● Mathematical proofs, asymptotic behaviour

 ch4: Solving recurrences
● Proof by induction (“substitution”)
● Proof by “master method”

 ch6: Sorting: Heap-sort
● Binary max-heaps
● Application: Heap-sort

24 Sep 2013CMPT231: proofs; heapsort 3CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Discrete math reviewDiscrete math review

 f(x) is monotone increasing
(“non-decreasing”) iff x < y ⇒ f(x) ≤ f(y)

 f(x) is strictly increasing iff x < y ⇒ f(x) < f(y)
 a mod n (in programming: “a % n”)

is the remainder of a when divided by n
 17 mod 5 = 2

 limx→af(x) = b (“limit as x goes to a of f(x) is b”)
means ∀ ε>0, ∃ δ>0: (|x – a| < δ) ⇒ (|f(x) – b| < ε)

 limn→∞f(n) = b (“limit as n goes to ∞ of f(n) is b”)
means ∀ ε>0, ∃ n0: (n > n0) ⇒ (|f(n) – b| < ε)

24 Sep 2013CMPT231: proofs; heapsort 4CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Math review: iterated functionsMath review: iterated functions

 Iterated functions (e.g., recursion):
● f(i)(x): the function f applied i times to x

 f(f(f(… f(x) …)))
 Not the same as fi(x) = (f(x))i

 e.g., log(2)(1000) = log(log(1000) = log(3) ≈ 0.477
➔ but log2(1000) = (log(1000))2 = 32 = 9

 f(0)(x) is defined to be just x (apply f zero times)

 Iterated log: lg*(n) = min(i≥0 : lg(i)(n) ≤ 1)
● “number of times lg needs to be applied to n

until the result is ≤ 1”
 lg*(16) = 3: lg(lg(lg(16))) = lg(lg(4)) = lg(2) = 1

24 Sep 2013CMPT231: proofs; heapsort 5CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Fibonacci and golden ratioFibonacci and golden ratio

 The nth Fibonacci number
is Fn = Fn-1 + Fn-2

● Start with F0 = 0, F1 = 1

 0, 1, 1, 2, 3, 5, 8, 13, 21, …
➔ (also see Lucas numbers: F0 = 2)

 Golden ratio φ (and conjugate φ) satisfy x2 = x + 1
 φ = (1 ± √5)/2 ≈ 1.61803... and -0.61803...

 #3.2-7 proves that Fn = (φn – φn) / √5

 The second part |φn| / √5 < ½,
so Fn = ⎣ φn/√5 + ½ ⎦

➔ i.e., Fn = round(φn/√5)
➔ grows exponentially!

24 Sep 2013CMPT231: proofs; heapsort 6CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Proving asymptotic behaviourProving asymptotic behaviour

 e.g., p.52 #3.1-2: show that for all constants a, b,
with b>0: (n + a)b = Θ(nb)

● i.e., find n0, c1, c2: ∀ n>n0, c1n
b ≤ (n + a)b ≤ c2n

b

● Find lower and upper bounds on (n + a)b

 We observe that n+a ≥ n/2 if n > 2|a|,
and that n+a ≤ 2n if n > |a|
● so n/2 ≤ n+a ≤ 2n, as long as n > 2|a|

 Then by the monotonicity of xb (x>1, b>0),
● (n/2)b ≤ (n + a)b ≤ (2n)b, when n > 2|a|

 So we pick n0 = 2|a|, c1 = 2-b, and c2 = 2b.

24 Sep 2013CMPT231: proofs; heapsort 7CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Proving asymptotic behaviourProving asymptotic behaviour

 e.g., p.62 #3-3: (lg n)! = ω(n3)
● Approach: take lg of both sides
● LHS: use Stirling: n! = √(2πn) (n/e)n (1 + Θ(1/n))

 ⇒ lg(n!) = Θ(n lg n) (p.58, Eq 3.19)
 ⇒ lg((lg n)!) = Θ((lg n) lg(lg n))

➔ Substitute n → lg n and use monotonicity of lg

● RHS: lg(n3) = 3 (lg n)
 lg(lg n) = ω(3), so now put it together:

● lg((lg n)!) = Θ((lg n) lg(lg n))
= ω(3 lg n)
= ω(lg(n3))

● Hence, by monotonicity of lg, (lg n)! = ω(n3)

24 Sep 2013CMPT231: proofs; heapsort 8CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Outline for todayOutline for today

 Review of discrete math:
● Monotonicity, limits, iterated funs, Fibonacci
● Mathematical proofs, asymptotic behaviour

 ch4: Solving recurrences
● Proof by induction (“substitution”)
● Proof by “master method”

 ch6: Sorting: Heap-sort
● Binary max-heaps
● Application: Heap-sort
● Application: Priority Queue

 ch7: Quick-sort

24 Sep 2013CMPT231: proofs; heapsort 9CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Mathematical inductionMathematical induction

 Deduction: general principles ⟹ specific case
 Induction: representative case ⟹ general rule

 Needs at least two axioms (givens):
● Base case: starting point, e.g., rule at n=1
● Inductive step: if the rule holds at some n,

then it also holds at n+1

 From these two axioms, we prove that the given
rule holds for all (positive) n

24 Sep 2013CMPT231: proofs; heapsort 10CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Proof by induction: exampleProof by induction: example

 Last time, we mentioned Gauss' formula for
● 1 + 2 + … + (n-1) + n = (n)(n+1)/2

 Now we prove it by induction:
 Proof of base case (n=1): 1 = (1)(1+1)/2

 Proof of inductive step:
● Assume: 1 + … + n = (n)(n+1)/2
● Want to prove: 1 + … + (n+1) = (n+1)(n+2)/2
● i.e., prove: (n)(n+1)/2 + (n+1) = (n+1)(n+2)/2

 (n+1)(n+2)/2 = (n2+3n+2)/2
= ((n2+n) + (2n+2))/2
= (n2+n)/2 + (2n+2)/2
= n(n+1)/2 + (n+1)

24 Sep 2013CMPT231: proofs; heapsort 11CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Induction for recurrencesInduction for recurrences

 Proof by induction also can apply to recurrences:
 e.g., complexity of merge sort:

● T(1) = θ(1), and
● T(n) = 2T(n/2) + θ(n)

 If we have a “guess” about the solution to T(n),
we can prove by induction if that guess is correct:

 Guess: T(n) = θ(n lg(n))

 Proof:
● Base case: T(1) = θ(1 lg(1)) = θ(1)

(i.e., constant time)
● Inductive step: (next slide)

24 Sep 2013CMPT231: proofs; heapsort 12CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Inductive proof for merge sort:Inductive proof for merge sort:

 Assume: T(m) = θ(m lg(m)), for m = n-1
 In fact, can assume this holds for all m < n

 Want to prove: T(n) = θ(n lg(n))
 i.e., for big n, there exist c1, c2 such that

c1(n lg(n)) ≤ T(n) ≤ c2(n lg(n))

 T(n) = 2T(n/2) + θ(n) (from the recurrence)
 ⇒ ∃ c1, c2: 2T(n/2) + c1(n) ≤ T(n) ≤ 2T(n/2) + c2(n)

 but T(n/2) = θ((n/2) lg(n/2)), so
 ⇒ ∃ c3, c4: c3(n/2 lg(n/2)) ≤ T(n/2) ≤ c4(n/2 lg(n/2))

 ⇒ (c3/2)(n lg(n) – n lg2) ≤ T(n/2) ≤ c4(...)

 ⇒ (c3/2)(n lg(n)) – (c1 lg2 / 2)n ≤ T(n/2) ≤ c4(...)

24 Sep 2013CMPT231: proofs; heapsort 13CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Inductive proof, continuedInductive proof, continued

 Combining the two, ∃ c1, c2, c3, c4 such that:

 2T(n/2) + c1(n) ≤ T(n) ≤ 2T(n/2) + c2(n)

 ⇒ 2(c3/2)(n lg(n)) – 2(c1 lg2 / 2)n + c1(n) ≤ T(n) ≤ …

 ⇒ c3(n lg(n)) – (c1 lg2 + c1)n ≤ T(n) ≤ …

 ⇒ c3(n lg(n)) – (2c1)n ≤ T(n) ≤ c4(n lg(n)) – (2c2)n

 ⇒ c3(n lg(n)) ≤ T(n) ≤ c5(n lg(n))

● LHS of last step: just need c1>0

● RHS of last step: we can't choose c2, c4,
but we can find an n0 such that for all n>n0,
the c4(n lg(n)) term overwhelms the (2c2)n term

 This proves that T(n) = θ(n lg(n))

24 Sep 2013CMPT231: proofs; heapsort 14CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Master method for recurrencesMaster method for recurrences

 If the recurrence has this specific form:
● T(n) = a T(n/b) + f(n)

 e.g., merge sort: a = 2, b = 2, f(n) = θ(n)

 Then compare f(n) with nlog_b(a):
● If f(n) = θ(nlog_b(a)):

 Leaves/roots balanced: T(n) = θ(nlog_b(a) lg(n))

● Else if f(n) = O(nlog_b(a)-ε) for some ε>0,
 Leaves dominate the work: T(n) = θ(nlog_b(a))

● Else if f(n) = Ω(nlog_b(a)+ε) for some ε>0
and a f(n/b) ≤ c f(n) for some c<1 and big n,

 Roots dominate the work: T(n) = θ(f(n))
 Regularity condition is fine for, e.g., f(n) = nk

24 Sep 2013CMPT231: proofs; heapsort 15CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Master method: examplesMaster method: examples

 Merge sort: T(n) = 2T(n/2) + θ(n)
 a=2, b=2, f(n) = θ(n)

● f(n) = θ(n) = θ(nlog_2(2))
 so leaves and roots contribute work equally

● ⇒ T(n) = θ(nlog_2(2) lg(n)) = θ(n lg(n))

 Strassen matrix multiply: T(n) = 7T(n/2) + θ(n2)
 a=7, b=2, f(n) = θ(n2)

● f(n) = θ(n2) = O(nlog_2(7)-ε)
 log27 ≈ 2.8, so pick an ε between 0 and 0.8

 Leaves dominate the work

● ⇒ T(n) = θ(nlog_2(7)) ≈ θ(n2.8)

24 Sep 2013CMPT231: proofs; heapsort 16CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Gaps in master thm coverageGaps in master thm coverage

 Not all recurrences aT(n/b) + f(n) work in master!
● e.g., T(n) = 2T(n/2) + n lg(n)

 n lg(n) ≠ θ(nlog_2(2)) = θ(n)
 n lg(n) ≠ O(n1-ε), for any ε>0
 n lg(n) ≠ Ω(n1+ε), for any ε>0

(because lg(n) ≠ Ω(nε) for any ε>0)

 Polylog extension to master theorem:
● If f(n) = θ(nlog_b(a) lgk(n))

 where lgk(n) = (lg(n))k

 Then T(n) = θ(nlog_b(a) lgk+1(n))

● (old case was with k=0)

 Above example: T(n) = θ(n lg2(n))

24 Sep 2013CMPT231: proofs; heapsort 17CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Outline for todayOutline for today

 Review of discrete math:
● Monotonicity, limits, iterated funs, Fibonacci
● Mathematical proofs, asymptotic behaviour

 ch4: Solving recurrences
● Proof by induction (“substitution”)
● Proof by “master method”

 ch6: Sorting: Heap-sort
● Binary max-heaps
● Application: Heap-sort
● Application: Priority Queue

 ch7: Quick-sort

24 Sep 2013CMPT231: proofs; heapsort 18CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Summary of sorting algorithmsSummary of sorting algorithms

 Comparison sorts (ch2, 6, 7)
● Insertion sort: Θ(n2), easy to program, slow
● Merge sort: Θ(n lg(n)), out-of-place sorting,

slow due to lots of copying / memory operations
● Heap sort: Θ(n lg(n)), in-place, uses max-heap
● Quick sort: Θ(n2) worst-case, Θ(n lg(n)) average,

in-place, fast (small) constant factors

 Linear-time non-comparison sorts (ch8):
● Counting sort: k distinct values: Θ(k)
● Radix sort: d digits w/k values: Θ(d(n+k))
● Bucket sort: for uniform distrib. of values: Θ(n)

24 Sep 2013CMPT231: proofs; heapsort 19CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Binary treesBinary trees

 Graph: collection of nodes and edges
● Edges may be directed or undirected

 Tree: directed acyclic graph (DAG)
● Choose a node as root
● Parent: immediate neighbour toward root
● Leaf: node with no children
● Degree: maximum number of children
● Node height: max # edges to leaf child
● Node depth: # edges to root
● Level: all nodes of same depth

 Binary tree: tree with degree=2

24 Sep 2013CMPT231: proofs; heapsort 20CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Binary heapsBinary heaps

 Array storage for
certain binary trees
● Children of node i are at 2i and 2i+1
● Must fill tree left-to-right, one level at a time

 Max-heap: value of a node is ≤ value of its parent
● Min-heap: ≥

 max_heapify() (O(lg n)): reposition a given node i
so it satisfies the max-heap property

 build_max_heap() (O(n)):
construct a max-heap from an unordered array

 heapsort() (O(n lg n)): sort array in-place

24 Sep 2013CMPT231: proofs; heapsort 21CMPT231: proofs; heapsortCMPT231: proofs; heapsort

max_heapify(): for single nodemax_heapify(): for single node

 max_heapify(A, i):
● Precondition: left and right sub-trees of i

satisfy the max-heap property
● Postcondition: subtree at i satisfies max-heap

 Algorithm:
● Amongst {i, left(i), right(i)}, find the largest
● If i is not the largest, then

 Swap i with the largest, and
 Recurse/iterate on that subtree

24 Sep 2013CMPT231: proofs; heapsort 22CMPT231: proofs; heapsortCMPT231: proofs; heapsort

max_heapify(): pseudocodemax_heapify(): pseudocode

 max_heapify(A, i):
 largest = i
 if 2i ≤ length(A) and A[2i] > A[largest]:

➔ largest = 2i
 else if 2i+1 ≤ length(A) and A[2i+1] > A[largest]:

➔ largest = 2i+1
 if largest ≠ i:

➔ swap(A[i], A[largest])
➔ max_heapify(A, largest)

 A=[2, 8, 4, 7, 5, 3, 1, 6], i=1:

 Running time?

22

88 44

77 55 33 11

66

24 Sep 2013CMPT231: proofs; heapsort 23CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Building a max-heapBuilding a max-heap

 build_max_heap(A):
● Input: array of items in any order
● Output: array has max-heap property

 Algorithm:
● Leave last half of array as all leaves
● Apply max_heapify() to each item in first half:

 for i = floor(length(A)/2) .. 1:
➔ max_heapify(A, i)

 Descending order: each time max_heapify() is called
on a node, its subtrees are already max-heaps

 Exercise: try it on [5, 2, 7, 4, 8, 1]

24 Sep 2013CMPT231: proofs; heapsort 24CMPT231: proofs; heapsortCMPT231: proofs; heapsort

build_max_heap(): complexitybuild_max_heap(): complexity

 Group iterations of for loop by height h of node:
● Each call to max_heapify(i) takes O(h)
● # of nodes with height h is ≤ ceil(n / 2h+1)

 Attains that bound when tree is full

 So algorithmic complexity is Σ((n / 2h+1) O(h))
 Sum for h = 0 .. lg(n) is ≤ sum for h = 0 .. ∞

● = n O(Σ (1/2)h+1), where sum is for h = 0 .. ∞
● = O(n)

 We can build a max heap in linear time!
● But it's not quite a sorting algorithm....

24 Sep 2013CMPT231: proofs; heapsort 25CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Outline for todayOutline for today

 Review of discrete math:
● Monotonicity, limits, iterated funs, Fibonacci
● Mathematical proofs, asymptotic behaviour

 ch4: Solving recurrences
● Proof by induction (“substitution”)
● Proof by “master method”

 ch6: Sorting: Heap-sort
● Binary max-heaps
● Application: Heap-sort
● Application: Priority Queue

 ch7: Quick-sort

24 Sep 2013CMPT231: proofs; heapsort 26CMPT231: proofs; heapsortCMPT231: proofs; heapsort

Using max-heaps for sortingUsing max-heaps for sorting

 Algorithm:
● Make array a max-heap
● Repeat, working backwards from end of array:

 Swap root of max-heap with last leaf of heap
 Shrink heap by 1 and apply max_heapify()

 At each iteration of the loop:
● First portion of array is a max-heap
● Last portion is a sorted array (largest items)

 Complexity: Θ(n) calls to max_heapify() (Θ(lg n))
● ⇒ Θ(n lg(n))

 Exercise: try it on [5, 2, 7, 4, 8, 1]

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

