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Outline for todayOutline for today

 Review of discrete math:
● Monotonicity, limits, iterated funs, Fibonacci
● Mathematical proofs, asymptotic behaviour

 ch4: Solving recurrences
● Proof by induction (“substitution”)
● Proof by “master method”

 ch6: Sorting: Heap-sort
● Binary max-heaps
● Application: Heap-sort
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Discrete math reviewDiscrete math review

 f(x) is monotone increasing
(“non-decreasing”) iff x < y ⇒ f(x) ≤ f(y)

 f(x) is strictly increasing iff x < y ⇒ f(x) < f(y)
 a mod n (in programming: “a % n”)

is the remainder of a when divided by n
 17 mod 5 = 2

 limx→af(x) = b (“limit as x goes to a of f(x) is b”)
means ∀ ε>0, ∃ δ>0: (|x – a| < δ) ⇒ (|f(x) – b| < ε)

 limn→∞f(n) = b (“limit as n goes to ∞ of f(n) is b”)
means ∀ ε>0, ∃ n0: (n > n0) ⇒ (|f(n) – b| < ε)
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Math review: iterated functionsMath review: iterated functions

 Iterated functions (e.g., recursion):
● f(i)(x): the function f applied i times to x

 f(f(f( … f(x) … )))
 Not the same as fi(x) = (f(x))i

 e.g., log(2)(1000) = log(log(1000) = log(3) ≈ 0.477
➔ but log2(1000) = (log(1000))2 = 32 = 9

 f(0)(x) is defined to be just x (apply f zero times)

 Iterated log: lg*(n) = min( i≥0 : lg(i)(n) ≤ 1 )
● “number of times lg needs to be applied to n 

until the result is ≤ 1”
 lg*(16) = 3: lg(lg(lg(16))) = lg(lg(4)) = lg(2) = 1
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Fibonacci and golden ratioFibonacci and golden ratio

 The nth Fibonacci number
is Fn = Fn-1 + Fn-2

● Start with F0 = 0, F1 = 1

 0, 1, 1, 2, 3, 5, 8, 13, 21, …
➔ (also see Lucas numbers: F0 = 2)

 Golden ratio φ (and conjugate φ) satisfy x2 = x + 1
 φ = (1 ± √5)/2 ≈ 1.61803... and -0.61803...

 #3.2-7 proves that Fn = (φn – φn) / √5

 The second part |φn| / √5 < ½,
so Fn = ⎣ φn/√5 + ½ ⎦

➔ i.e., Fn = round( φn/√5 )
➔ grows exponentially!
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Proving asymptotic behaviourProving asymptotic behaviour

 e.g., p.52 #3.1-2: show that for all constants a, b, 
with b>0: (n + a)b = Θ(nb)

● i.e., find n0, c1, c2: ∀ n>n0, c1n
b ≤ (n + a)b ≤ c2n

b

● Find lower and upper bounds on (n + a)b

 We observe that n+a ≥ n/2 if n > 2|a|,
and that n+a ≤ 2n if n > |a|
● so n/2 ≤ n+a ≤ 2n, as long as n > 2|a|

 Then by the monotonicity of xb (x>1, b>0),
● (n/2)b ≤ (n + a)b ≤ (2n)b, when n > 2|a|

 So we pick n0 = 2|a|, c1 = 2-b, and c2 = 2b.
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Proving asymptotic behaviourProving asymptotic behaviour

 e.g., p.62 #3-3: (lg n)! = ω(n3)
● Approach: take lg of both sides
● LHS: use Stirling: n! = √(2πn) (n/e)n (1 + Θ(1/n))

 ⇒ lg(n!) = Θ(n lg n) (p.58, Eq 3.19)
 ⇒ lg( (lg n)! ) = Θ( (lg n) lg(lg n) )

➔ Substitute n → lg n and use monotonicity of lg

● RHS: lg(n3) = 3 (lg n)
 lg(lg n) = ω(3), so now put it together:

● lg( (lg n)! ) = Θ( (lg n) lg(lg n) )
= ω(3 lg n)
= ω(lg( n3 ))

● Hence, by monotonicity of lg, (lg n)! = ω(n3)
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Outline for todayOutline for today

 Review of discrete math:
● Monotonicity, limits, iterated funs, Fibonacci
● Mathematical proofs, asymptotic behaviour

 ch4: Solving recurrences
● Proof by induction (“substitution”)
● Proof by “master method”

 ch6: Sorting: Heap-sort
● Binary max-heaps
● Application: Heap-sort
● Application: Priority Queue

 ch7: Quick-sort
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Mathematical inductionMathematical induction

 Deduction: general principles ⟹ specific case
 Induction: representative case ⟹ general rule

 Needs at least two axioms (givens):
● Base case: starting point, e.g., rule at n=1
● Inductive step: if the rule holds at some n,

then it also holds at n+1

 From these two axioms, we prove that the given 
rule holds for all (positive) n
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Proof by induction: exampleProof by induction: example

 Last time, we mentioned Gauss' formula for
● 1 + 2 + … + (n-1) + n = (n)(n+1)/2

 Now we prove it by induction:
 Proof of base case (n=1): 1 = (1)(1+1)/2

 Proof of inductive step:
● Assume: 1 + … + n = (n)(n+1)/2
● Want to prove: 1 + … + (n+1) = (n+1)(n+2)/2
● i.e., prove: (n)(n+1)/2 + (n+1) = (n+1)(n+2)/2

 (n+1)(n+2)/2 = (n2+3n+2)/2
= ( (n2+n) + (2n+2) )/2
= (n2+n)/2 + (2n+2)/2
= n(n+1)/2 + (n+1)
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Induction for recurrencesInduction for recurrences

 Proof by induction also can apply to recurrences:
 e.g., complexity of merge sort:

● T(1) = θ(1), and
● T(n) = 2T(n/2) + θ(n)

 If we have a “guess” about the solution to T(n), 
we can prove by induction if that guess is correct:

 Guess: T(n) = θ(n lg(n))

 Proof:
● Base case: T(1) = θ(1 lg(1) ) = θ(1)

(i.e., constant time)
● Inductive step: (next slide)
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Inductive proof for merge sort:Inductive proof for merge sort:

 Assume: T(m) = θ(m lg(m)), for m = n-1
 In fact, can assume this holds for all m < n

 Want to prove: T(n) = θ(n lg(n))
 i.e., for big n, there exist c1, c2 such that

c1(n lg(n)) ≤ T(n) ≤ c2(n lg(n))

 T(n) = 2T(n/2) + θ(n) (from the recurrence)
 ⇒ ∃ c1, c2: 2T(n/2) + c1(n) ≤ T(n) ≤ 2T(n/2) + c2(n)

 but T(n/2) = θ( (n/2) lg(n/2) ), so
 ⇒ ∃ c3, c4: c3(n/2 lg(n/2)) ≤ T(n/2) ≤ c4(n/2 lg(n/2))

 ⇒ (c3/2)(n lg(n) – n lg2) ≤ T(n/2) ≤ c4(...)

 ⇒ (c3/2)(n lg(n)) – (c1 lg2 / 2)n ≤ T(n/2) ≤ c4(...)
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Inductive proof, continuedInductive proof, continued

 Combining the two, ∃ c1, c2, c3, c4 such that:

 2T(n/2) + c1(n) ≤ T(n) ≤ 2T(n/2) + c2(n)

 ⇒ 2(c3/2)(n lg(n)) – 2(c1 lg2 / 2)n + c1(n) ≤ T(n) ≤ …

 ⇒ c3(n lg(n)) – (c1 lg2 + c1)n ≤ T(n) ≤ …

 ⇒ c3(n lg(n)) – (2c1)n ≤ T(n) ≤ c4(n lg(n)) – (2c2)n

 ⇒ c3(n lg(n)) ≤ T(n) ≤ c5(n lg(n))

● LHS of last step: just need c1>0

● RHS of last step: we can't choose c2, c4,
but we can find an n0 such that for all n>n0,
the c4(n lg(n)) term overwhelms the (2c2)n term

 This proves that T(n) = θ(n lg(n))
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Master method for recurrencesMaster method for recurrences

 If the recurrence has this specific form:
● T(n) = a T(n/b) + f(n)

 e.g., merge sort: a = 2, b = 2, f(n) = θ(n)

 Then compare f(n) with nlog_b(a):
● If f(n) = θ(nlog_b(a)):

 Leaves/roots balanced: T(n) = θ(nlog_b(a) lg(n))

● Else if f(n) = O(nlog_b(a)-ε) for some ε>0,
 Leaves dominate the work: T(n) = θ(nlog_b(a))

● Else if f(n) = Ω(nlog_b(a)+ε) for some ε>0
and a f(n/b) ≤ c f(n) for some c<1 and big n,

 Roots dominate the work: T(n) = θ(f(n))
 Regularity condition is fine for, e.g., f(n) = nk
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Master method: examplesMaster method: examples

 Merge sort: T(n) = 2T(n/2) + θ(n)
 a=2, b=2, f(n) = θ(n)

● f(n) = θ(n) = θ(nlog_2(2))
 so leaves and roots contribute work equally

● ⇒ T(n) = θ(nlog_2(2) lg(n)) = θ(n lg(n))

 Strassen matrix multiply: T(n) = 7T(n/2) + θ(n2)
 a=7, b=2, f(n) = θ(n2)

● f(n) = θ(n2) = O(nlog_2(7)-ε)
 log27 ≈ 2.8, so pick an ε between 0 and 0.8

 Leaves dominate the work

● ⇒ T(n) = θ(nlog_2(7)) ≈ θ(n2.8)
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Gaps in master thm coverageGaps in master thm coverage

 Not all recurrences aT(n/b) + f(n) work in master!
● e.g., T(n) = 2T(n/2) + n lg(n)

 n lg(n) ≠ θ(nlog_2(2)) = θ(n)
 n lg(n) ≠ O(n1-ε), for any ε>0
 n lg(n) ≠ Ω(n1+ε), for any ε>0

(because lg(n) ≠ Ω(nε) for any ε>0)

 Polylog extension to master theorem:
● If f(n) = θ(nlog_b(a) lgk(n))

 where lgk(n) = (lg(n))k

 Then T(n) = θ(nlog_b(a) lgk+1(n))

● (old case was with k=0)

 Above example: T(n) = θ(n lg2(n))
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Outline for todayOutline for today

 Review of discrete math:
● Monotonicity, limits, iterated funs, Fibonacci
● Mathematical proofs, asymptotic behaviour

 ch4: Solving recurrences
● Proof by induction (“substitution”)
● Proof by “master method”

 ch6: Sorting: Heap-sort
● Binary max-heaps
● Application: Heap-sort
● Application: Priority Queue

 ch7: Quick-sort
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Summary of sorting algorithmsSummary of sorting algorithms

 Comparison sorts (ch2, 6, 7)
● Insertion sort: Θ(n2), easy to program, slow
● Merge sort: Θ(n lg(n)), out-of-place sorting,

slow due to lots of copying / memory operations
● Heap sort: Θ(n lg(n)), in-place, uses max-heap
● Quick sort: Θ(n2) worst-case, Θ(n lg(n)) average, 

in-place, fast (small) constant factors

 Linear-time non-comparison sorts (ch8):
● Counting sort: k distinct values: Θ(k)
● Radix sort: d digits w/k values: Θ(d(n+k))
● Bucket sort: for uniform distrib. of values: Θ(n)
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Binary treesBinary trees

 Graph: collection of nodes and edges
● Edges may be directed or undirected

 Tree: directed acyclic graph (DAG)
● Choose a node as root
● Parent: immediate neighbour toward root
● Leaf: node with no children
● Degree: maximum number of children
● Node height: max # edges to leaf child
● Node depth: # edges to root
● Level: all nodes of same depth

 Binary tree: tree with degree=2
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Binary heapsBinary heaps

 Array storage for
certain binary trees
● Children of node i are at 2i and 2i+1
● Must fill tree left-to-right, one level at a time

 Max-heap: value of a node is ≤ value of its parent
● Min-heap: ≥

 max_heapify() (O(lg n)): reposition a given node i 
so it satisfies the max-heap property

 build_max_heap() (O(n)):
construct a max-heap from an unordered array

 heapsort() (O(n lg n)): sort array in-place
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max_heapify(): for single nodemax_heapify(): for single node

 max_heapify(A, i):
● Precondition: left and right sub-trees of i 

satisfy the max-heap property
● Postcondition: subtree at i satisfies max-heap

 Algorithm:
● Amongst {i, left(i), right(i)}, find the largest
● If i is not the largest, then

 Swap i with the largest, and
 Recurse/iterate on that subtree
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max_heapify(): pseudocodemax_heapify(): pseudocode

 max_heapify(A, i):
 largest = i
 if 2i ≤ length(A) and A[2i] > A[largest]:

➔ largest = 2i
 else if 2i+1 ≤ length(A) and A[2i+1] > A[largest]:

➔ largest = 2i+1
 if largest ≠ i:

➔ swap( A[i], A[largest] )
➔ max_heapify(A, largest)

 A=[2, 8, 4, 7, 5, 3, 1, 6], i=1:

 Running time?

22

88 44

77 55 33 11

66
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Building a max-heapBuilding a max-heap

 build_max_heap(A):
● Input: array of items in any order
● Output: array has max-heap property

 Algorithm:
● Leave last half of array as all leaves
● Apply max_heapify() to each item in first half:

 for i = floor( length(A)/2 ) .. 1:
➔ max_heapify( A, i )

 Descending order: each time max_heapify() is called 
on a node, its subtrees are already max-heaps

 Exercise: try it on [5, 2, 7, 4, 8, 1]
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build_max_heap(): complexitybuild_max_heap(): complexity

 Group iterations of for loop by height h of node:
● Each call to max_heapify(i) takes O(h)
● # of nodes with height h is ≤ ceil(n / 2h+1)

 Attains that bound when tree is full

 So algorithmic complexity is Σ( (n / 2h+1) O(h) )
 Sum for h = 0 .. lg(n) is ≤ sum for h = 0 .. ∞

● = n O( Σ (1/2)h+1 ), where sum is for h = 0 .. ∞
● = O(n)

 We can build a max heap in linear time!
● But it's not quite a sorting algorithm....
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Using max-heaps for sortingUsing max-heaps for sorting

 Algorithm:
● Make array a max-heap
● Repeat, working backwards from end of array:

 Swap root of max-heap with last leaf of heap
 Shrink heap by 1 and apply max_heapify()

 At each iteration of the loop:
● First portion of array is a max-heap
● Last portion is a sorted array (largest items)

 Complexity: Θ(n) calls to max_heapify() (Θ(lg n))
● ⇒ Θ(n lg(n) )

 Exercise: try it on [5, 2, 7, 4, 8, 1]
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