Ch8: Linear-time sorts Ch11: Hash tables

8 Oct 2013 CMPT231 Dr. Sean Ho Trinity Western University

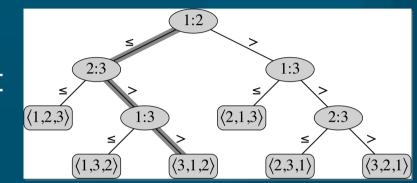
- Proof why comparison sorts must be $\Omega(n \log n)$
- Linear-time non-comparison sorts:
 - Counting sort
 - Radix sort, complexity
 - Bucket sort: proof w/ probabilistic analysis
- Hash tables:
 - Collision handling by chaining
 - Hash functions and universal hashing
 - Collision handling by open addressing

Summary of sorting algorithms

- Comparison sorts (ch2, 6, 7)
 - Insertion sort: ⊖(n²), easy to program, slow
 - Merge sort: ⊖(n lg(n)), out-of-place sorting, slow due to lots of copying / memory operations
 - Heap sort: ⊖(n lg(n)), in-place, uses max-heap
 - Quick sort: Θ(n²) worst-case, Θ(n lg(n)) average, in-place, fast (small) constant factors
- Linear-time non-comparison sorts (ch8):
 - Counting sort: k distinct values: ⊖(n+k)
 - Radix sort: d digits w/k values: Θ(d(n+k))
 - Bucket sort: for uniform distrib. of values: ⊖(n)

Comparison sorts are $\Omega(n \lg n)$

- Decision tree model of computation:
 - Leaves are possible outputs
 - i.e., permutations of the input
 - Nodes are decision points
 - when comparisons are made



- Path through tree is one run on an input
- # leaves = # permutations = n!
- # comparisons = # nodes along path
 - = depth of tree
 - = $\Omega(\lg(\# \text{ leaves})) = \Omega(\lg n!)$
 - = $\Omega(n \mid g \mid n)$ (by Stirling, Eq3.19)

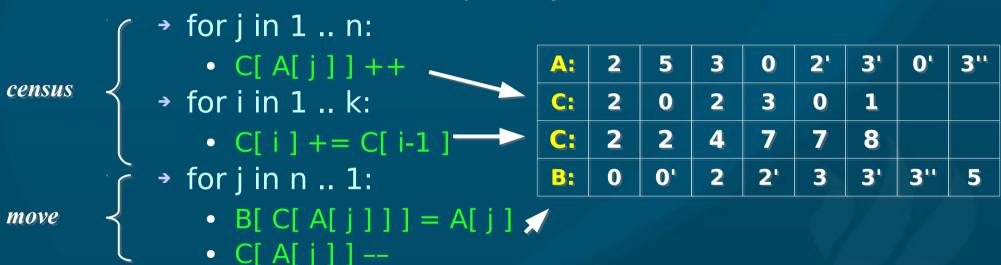
- Proof why comparison sorts must be $\Omega(n \log n)$
- Linear-time non-comparison sorts:
 - Counting sort
 - Radix sort, complexity
 - Bucket sort: proof w/ probabilistic analysis
- Hash tables:
 - Collision handling by chaining
 - Hash functions and universal hashing
 - Collision handling by open addressing

Linear-time sorts

- Linear-time sorts use assumptions on input data
 - e.g., range of possible values is limited+known
 - e.g., distribution of values is known
- In practise, $\Theta(n)$ and $\Theta(n \mid g \mid n)$ are very similar
 - e.g., up to $n=10^6$: Ig n < 21, a smallish factor
 - A fast n lg n sort (like quicksort) may have smaller constants than a linear-time sort
- Hybrid algorithms: e.g., (7.4-5)
 - Pass 1 w/quicksort, stop when length < c
 - Pass 2 w/insertion sort on "nearly sorted" data
- Recursion (function call) is expensive

Counting sort

- Assume: values are integers in {0, ..., k}
 - countingSort(A, n, k):
 - → let B[1 .. n] be new (output) array
 - → let C[0 .. k] be temp array, initialised to 0



- → return B
- Stable: preserves order of duplicate keys
- \blacksquare Complexity: $\Theta(n+k)$ (watch out if k gets big!)

Radix sort

- ◆ (How IBM made its fortune! punch cards ~1900)
- Sort one digit at a time, least-significant first
- Assume: values have max #digits d
 - radixSort(A, n, d):
 - → for i in 1 .. d:
 - stableSort(A on digit i)
 - stableSort() can be, e.g., counting sort
 - (why is stability important?)
 - (why start from least-significant digit?)

3	7	4	5
2	9	1	3
1	0	1	6
2	0	1	6
	9	1	3

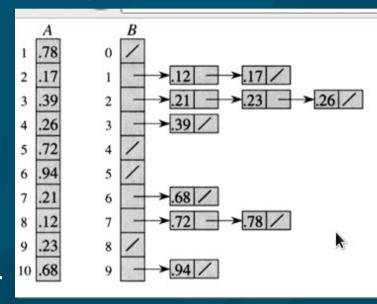
Radix sort: complexity

- Using counting sort, we have d loops of $\Theta(n+k)$:
 - \Rightarrow complexity of radix sort is $\Theta(d(n+k))$
 - n items of d digits,
 where each digit can take k values (e.g., k=10)
- Given b-bit items, find r to get optimal r-bit digits:
 - d = b/r and $k = 2^r 1$
 - → e.g., 32-bit ints, 8-bit digits \Rightarrow b=32, r=8, d=4, k=255
 - Complexity is $\Theta(d(n+k)) = \Theta((b/r)(n+2r))$
 - Balance the b/r with the n + 2^r
 - e.g., by choosing r = lg n:
 - ◆ Θ((b/r) (n + 2^r)) = Θ((b / lg n) (2n)) = Θ(bn / lg n)
 - \rightarrow e.g., to sort n=2¹⁶ ints of b=32-bits, use r=16-bit digits

- Proof why comparison sorts must be $\Omega(n \lg n)$
- Linear-time non-comparison sorts:
 - Counting sort
 - Radix sort, complexity
 - Bucket sort: proof w/ probabilistic analysis
- Hash tables:
 - Collision handling by chaining
 - Hash functions and universal hashing
 - Collision handling by open addressing

Bucket sort

- Assume: values uniformly distributed over [0,1)
- Idea: Divide range [0,1) into n equal-size buckets
 - e.g., each bucket can be a small array or linked list
 - Distribute input into buckets
 - Sort each bucket
 - e.g., by insertion sort
 - should be fast because we expect small buckets
 - Pull from each bucket in order



Kent U

- Correctness: if A[i] ≤ A[j], then either:
 - A[i]/n = A[j]/n (same bucket: insertion sort), or

]/n < A[j]/n (diff bucket: order of buckets)

Bucket sort: complexity

- Let n = # items in ith bucket
 - Intuitively, if items are uniformly distrib, $n_i \approx 1$
 - so whole thing should be $T(n) = \Theta(n)$
- To be rigorous: notice that $T(n) = \Theta(n) + \sum_{i=0}^{\infty} O(n_i^2)$
- Find expected value:

$$E[T(n)] = E[\Theta(n) + \sum_{i=1}^{n} O(n_i^2)] = \Theta(n) + O(\sum_{i=1}^{n} E[n_i^2])$$

- Claim that $E[n_i^2] = 2 (1/n)$ for all i:
 - if so, then E[T(n)] = $\Theta(n)$ + $O(\Sigma(2 1/n))$
 - $=\Theta(n)+O(2n-1)$
 - $= \Theta(n)$, and the proof is complete

Bucket sort: $E[n_i^2] = 2 - (1/n)$

- Use indicator variable:
 - X_{ii} = 1 if A[j] falls in bucket i, and 0 if not
 - So $n_i = \sum_i X_{ii}$ (count of items in this bucket)
- So E[n_i^2] = E[$(\Sigma_j X_{ij})^2$] (count items) = Σ_j E[X_{ij}^2] + $2\Sigma_j$ Σ_k E[$X_{ij}X_{ik}$] (expand)
- Consider each term separately:
 - Applying probability rules:

E[
$$X_{ij}^2$$
] = 0² P(X_{ij} = 0) + 1² P(X_{ij} = 1)
= 0² (1 - 1/n) + 1² (1/n) = 1/n

• Since items $j \neq k$ are independent: $E[X_{ij}X_{ik}] = E[X_{ij}] E[X_{ik}] = (1/n)(1/n) = 1/n^2$

Bucket sort: finish proof

```
■ So E[n_i^2] = \Sigma_j E[X_{ij}^2] + 2\Sigma_j\Sigma_k E[X_{ij}X_{ik}]

= \Sigma_j (1/n) + 2\Sigma_j\Sigma_k (1/n²)

= (1/n) \Sigma_j (1) + (2/n²) \Sigma_j\Sigma_k (1)

= (1/n)(n) + (2/n²)(n(n-1)/2)

= 1 + n(n-1)/n²

= 2 - 1/n
```

Hence expected running time for bucket sort is

```
E[T(n)] = \Theta(n) + \Sigma (2 - 1/n)
= \Theta(n) + 2n - 1
= \Theta(n), linear time
```

Assumptions: input uniformly distributed on [0,1)

- Proof why comparison sorts must be $\Omega(n \lg n)$
- Linear-time non-comparison sorts:
 - Counting sort
 - Radix sort, complexity
 - Bucket sort: proof w/ probabilistic analysis
- Hash tables:
 - Collision handling by chaining
 - Hash functions and universal hashing
 - Collision handling by open addressing

Hash tables

- Dictionary of key-value pairs, e.g., Python dict
- Interface:
 - insert(T, k, x): add item x with key k
 - search(T, k): find an item with key k
 - delete(T, x): delete specific item x
- Better than regular array (direct addressing) when
 - Range of possible keys is too huge to allocate
 - Actual keys are sparse subset of possible keys
 - e.g., only have items at keys 0, 2, 40201300
 - Regular array would allocate 40201300 entries!

Hashing

- Main idea:
 - Hash function
 h(k): U → {0, ..., m-1}
 maps from set U of possible keys
 into a set of m buckets
 - Use h(k) as key instead of k
- Hash collision when two keys hash to same bucket

(universe of keys)

(actual keys)

- Hopefully, this is rare
- Chain multiple items via linked list
- Idea is similar to bucket sort, but
 - Don't know distribution or range of keys, so

Implementing hash tables

- insert(T, k, x):
 - Insert x at the head of the linked list at slot h(k)
 - Complexity: O(1)
 - Assumes x is not already in the list
- search(T, k):
 - Linear search through the list at slot h(k)
 - Complexity: O(length of list at h(k))
- delete(T, x):
 - If given pointer directly to item x, then O(1)
 - If not, then need to do a search first

Hash table load factor

- Efficiency of hash table depends on search()
 - Which depends on # items n_{h(k)} in each bucket
- Load factor $\alpha = n/m$:
 - n = # items currently stored in hash table
 - m = # buckets
- So $E[n_{h(k)}] = \alpha$ (average # items per bucket)
- An unsuccessful search takes average $\Theta(1 + \alpha)$:
 - Computing hash function takes $\Theta(1)$
 - Linear search needs to search entire bucket
 - Expected length of bucket is α

Complexity of search()

- A successful search also takes average $\Theta(1 + \alpha)$:
- # items searched = # collisions after x inserted
- Use indicator $X_{ij} = \{ 1 \text{ if } h(k_i) = h(k_j), 0 \text{ else } \}$
 - E[X_{ij}] = (prob. of collision) = 1/m
- $\blacksquare E[# items searched] = E[(1/n) Σ (# items)]$
 - $= E[(1/n) \Sigma_{i} (1 + \Sigma_{i} X_{ii})]$
 - $= (1/n) \Sigma_{i} (1 + \Sigma_{i} E[X_{ii}])$
 - = $(1/n) \Sigma_{i} (1 + \Sigma_{i} (1/m))$
 - $= 1 + (1/n) \Sigma_i \Sigma_i (1/m)$
 - = 1 + (1/nm) n(n-1)/2
 - $= 1 + \alpha/2 \alpha/2n$

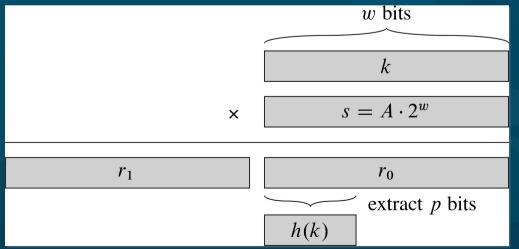
- Proof why comparison sorts must be $\Omega(n \log n)$
- Linear-time non-comparison sorts:
 - Counting sort
 - Radix sort, complexity
 - Bucket sort: proof w/ probabilistic analysis
- Hash tables:
 - Collision handling by chaining
 - Hash functions and universal hashing
 - Collision handling by open addressing

Hash functions

- Wlog, assume keys k are natural numbers
 - If not, convert (e.g., ASCII codes)
- Want h(k) to be uniformly distributed on 0..m-1
 - But distribution of keys k is unknown
 - Keys k and k might not be independent
- Division hash: h(k) = k mod m
 - Fast, but if m=2^p, this is just the p least-sig bits
 - If k is a string using radix-2^p representation, then permuting the string gives same hash (11.3-3)
 - Choose m prime, not too close to a power of 2

Multiplication hash

- Multiplication hash: $h(k) = [m(kA \mod 1)]$, where 0 < A < 1 is some chosen constant
- Fast implementation using m=2^p:
 - Let w be the native machine word size (#bits)
 - Pick a w-bit integer s in $0 < s < 2^w$, let $A = s/2^w$
 - Multiply s*k: product has 2w bits in words r₀, r₁
 - Select the p most-sig bits of the lower word r_0



 $try A \approx \varphi - 1?$

Universal hashes

- Any fixed choice of hash function is vulnerable to pathological input specifically designed to obtain many hash collisions
- Keep a pool H of hash functions, randomly select
- Want pool to have the universal hash property:
 - For any two keys j ≠ k, the number of hash functions in H that cause a collision h(j) = h(k) is ≤ |H| / m
- Then expected size of buckets is $O(1+\alpha)$, and complexity of search is still O(1).

- Proof why comparison sorts must be $\Omega(n \lg n)$
- Linear-time non-comparison sorts:
 - Counting sort
 - Radix sort, complexity
 - Bucket sort: proof w/ probabilistic analysis
- Hash tables:
 - Collision handling by chaining
 - Hash functions and universal hashing
 - Collision handling by open addressing

Open addressing

- Another way to handle collisions, instead of chain
- Keys stored directly in table, no linked lists
- To search:
 - Probe in slot h(k):
 - if NIL, unsuccessful search (and we're done)
 - if the entry is our key, we've found it
 - if the entry is not our key, we hit a collision:
 - → Try again with next entry in probe sequence
- Hash function h: $U \times \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}$
 - Probe sequence: h(k,0), h(k,1), h(k,2), ...
 - Must be a permutation of the slots {0, ..., m-1}

Probe sequencing

- Ideally, want uniform hashing: each permutation is equally likely to be probe sequence for a key
- Linear probing:
 - First try h(k), then h(k)+1, etc (mod m)
 - Long filled runs get longer (more likely to hit)
- Quadratic probing:
 - First try h(k), then jump around quadratically:
 - $h(k, i) = (h(k) + c_1 i + c_2 i^2) \mod m$
 - Must choose c₁,c₂ to get full permutation
 - Collision on initial $h(k) \Rightarrow$ full sequence collision

Probe seq.: double hashing

- Use two hash functions h₁ and h₂:
 - Try h₁(k) first, then use h₂ to jump around:
 - $h(k, i) = (h_1(k) + i h_2(k)) \mod m$
 - In order to get full permutation,
 h₂(k) and m must be relatively prime
 - e.g., let $m=2^p$ and ensure $h_2(k)$ always odd
 - or, let m be prime, and ensure $1 < h_2(k) < m$
- Each combination of h₁(k) and h₂(k) yields a different probe sequence:
 - total # sequences = $\Theta(n^2)$

