ch15: Dynamic Programming

22 Oct 2013 CMPT231 Dr. Sean Ho Trinity Western University

- Rod-cutting problem
- Optimal substructure
 - Naive top-down
 - Top-down with memoisation
 - Bottom-up
- Examples:
 - Fibonacci
 - Matrix-chain multiplication
 - Shortest unweighted path
 - Optimal binary search trees

Optimisation

A large class of real-world problems consist of: • Find the maximum (or minimum) value of some goal/cost function, over some search space Search space may be discrete or continuous, low-dimensioned or very high (10⁶ or more) dim Goal function may be analytic or some black-box May or may not have accessible derivatives Exhaustive search is usually way too slow

Andreas Hopf

Dynamic programming

"Programming" as in tables, e.g., linear prog. Divide-and-conquer approach, but Store and re-use solutions to sub-problems 3 implementation schemes: Recursive top-down (inefficient) Top-down with memoisation (save sub-results) Bottom-up (solve smaller sub-problems first) Efficiency depends on: Optimal substructure • Overlapping subproblems

- Rod-cutting problem
- Optimal substructure
 - Naive top-down
 - Top-down with memoisation
 - Bottom-up
- Examples:
 - Fibonacci
 - Matrix-chain multiplication
 - Shortest unweighted path
 - Optimal binary search trees

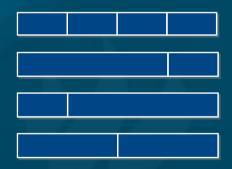
Rod-cutting problem

Steel rods of length i can be sold for \$p, each

- How to cut a single rod of length n into pieces so as to maximise revenue?
 - Assume cuts are free

e.g., price table p=[1, 5, 8, 9]. Rod length n=4

 Exhaustive search for max revenue: \$9, \$8+1, \$1+8, \$5+5, \$5+1+1, \$1+5+1, \$1+1+5, \$1+1+1+1



- Optimal: 2 pieces of length $2 \Rightarrow$
- CutRod(p, 4) = $r_4 = $5+5$

Rod-cutting: subproblems

Optimise one cut at a time, left to right Assume the first piece won't be cut again, and Recurse/repeat on second piece $\Box CutRod(p, n) = max_{1 \le i \le n} (p[i] + CutRod(p, n-i))$ Second piece is a subproblem To use dynamic programming, we need: Optimal substructure: optimal solution to subproblem yields optimal solution to problem • Overlapping subproblems: the subproblems show up in multiple branches of recursion tree (This gives us efficiency / reuse of solutions)

Optimal substructure

B n-i Prove optimal substructure: Let A be an optimal solution for the whole rod Let i be location of the first cut in A, and let A_n be the rest of the cuts in A_n Prove A_{n-i} is an opt soln for subprob CR(p, n-i) If not, then let B_{n-i} be a better solution for CR(p, n-i): $\rightarrow \text{price}(B_{n-i}) > \text{price}(A_{n-i})$ • Then combining $B_n = [i, B_{n-i}]$ yields a better price: $\rightarrow \text{ price}(B_n) = p[i] + \text{ price}(B_{n-i})$ > $p[i] + price(A_{p,i}) = price(A_p)$ This contradicts that A_n was optimal for whole rod

A n-i

Overlapping subproblems

- Optimal substructure shows that this recursive solution works
- To make it faster than exhaustive search, we need solutions to subproblems to be reusable
 - Taxonomy of subproblems:
 - Index by length n of rod in subproblem CR(p, n)
 - Reuse of optimal solutions to subproblems:
 - A solution for rods of length 5 works anywhere within a longer rod
 - Does not depend on location, only length
 - Solutions to small rods like CR(p, 2) can be reused many times
 - Results in saving a lot of computation!

- Rod-cutting problem
- Optimal substructure
 - Naive top-down
 - Top-down with memoisation
 - Bottom-up
- Examples:
 - Fibonacci
 - Matrix-chain multiplication
 - Shortest unweighted path
 - Optimal binary search trees

(1) Recursive top-down

Naive implementation of the recurrence above:

- → def CutRod(p, n):
 - if (n<1): return 0
 - q = -infinity
 - for i = 1 .. n:
 - q = max(q, p[i] + CutRod(p, n-i))
 - return q

Each iteration of loop makes recursive call

- Complexity? Recursion tree?
 - T(n) = 2ⁿ (Exercise 15.1-1)

Increasing input by 1 ⇒ double the run time!
 Why so bad? e.g., CutRod(2) is run many times

(2) Top-down with memoisation

Memoisation: cache previously-computed results

- cache = array[0..n] of -infinity
- → cache[0] = 0
- → def CutRod(p, n):
 - if cache[n] ≠ -infinity:
 - return cache[n]
 - for i in 1 .. n:
 - cache[n] = max(cache[n], p[i] + CutRod(p, n-i))
 - return cache[n]

CutRod(n) is computed only once for each n

• CutRod(n) takes O(n) to compute if not cached

• \Rightarrow Complexity is $\Sigma_i \Theta(i) = \Theta(n^2)$

But still recursive (slow)

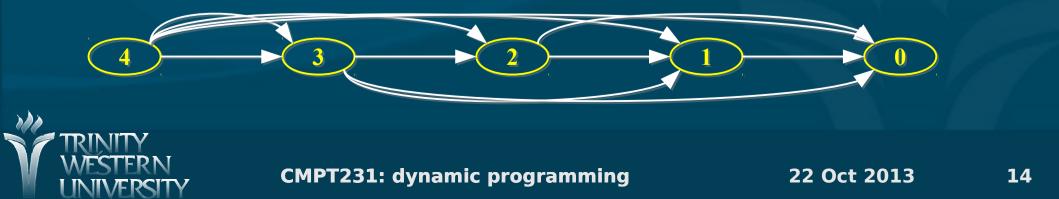
(3) Bottom-up

Start from smaller subproblems, caching as we go

- → def CutRod(p, n):
 - cache = array[0..n] of -infinity
 - cache[0] = 0
 - for j = 1 .. n:
 - for i = 1 .. j:
 - cache[j] = max(cache[j], p[i] + cache[j i]))
 - return cache[n]
- Non-recursive! (function calls are expensive)
- Doubly-nested for loop calculates each CutRod(j)
- Cache stores results of subproblems, which each are re-used many times
- Complexity: $\Sigma_i \Theta(j) = \Theta(n^2)$

Subproblem graph

Nodes are subproblems (e.g., CutRod(n)) Arrows indicate which other smaller subproblems are needed to compute each node • Like recursion tree, but collapsing same nodes Bottom-up: order nodes so that all dependencies are precomputed before we reach a node Top-down: depth-first search down to leaves • Complexity is generally $\Theta($ #nodes + #arrows)



- Rod-cutting problem
- Optimal substructure
 - Naive top-down
 - Top-down with memoisation
 - Bottom-up
- Examples:
 - Fibonacci
 - Matrix-chain multiplication
 - Shortest unweighted path
 - Optimal binary search trees

Fibonacci sequence

Recall: $F_n = F_{n-1} + F_{n-2}$ • $F_0 = F_1 = 1$

Closed form: O(1)

def fib(n):
 return round(pow(phi, n))

Top-down w/memo: Θ(n)

```
c = array[0..n] of -1
c[0] = c[1] = 1
def fib(n):
    if (c[n]>0): return c[n]
        c[n] = fib(n-1) + fib(n-2)
        return c[n]
```

■ Naive top-down: ⊖(2ⁿ)

def fib(n):
 if (n<2): return 1
 return fib(n-1) + fib(n-2)</pre>

Bottom-up: Θ(n)

```
def fib(n):

c = array[0..n] of -1

c[0] = c[1] = 1

for j = 2 .. n:

c[j] = c[j-1] + c[j-2]

return c[n]
```

Subproblem graph?

Matrix-chain multiplication

Given a chain of n matrices (diff dims) to multiply:
 (A₁) (A₂) (A₃) ... (A_n)

• $(p_0 \times p_1) (p_1 \times p_2) (p_2 \times p_3) \dots (p_{n-1} \times p_n)$

#cols of left matrix = #rows of right matrix
 Any parenthesisation is equivalent, but which one minimises number of operations?
 e.g., (5 x 500) (500 x 2) (2 x 50):

• Try $(A_1A_2)A_3$: 5*500*2 + 5*2*50 = 5500 ops

• Try $A_1(A_2A_3)$: 500*2*50 + 5*500*50 = 175000

• Exhaustive search of parenthesisations: $\Theta(2^n)$

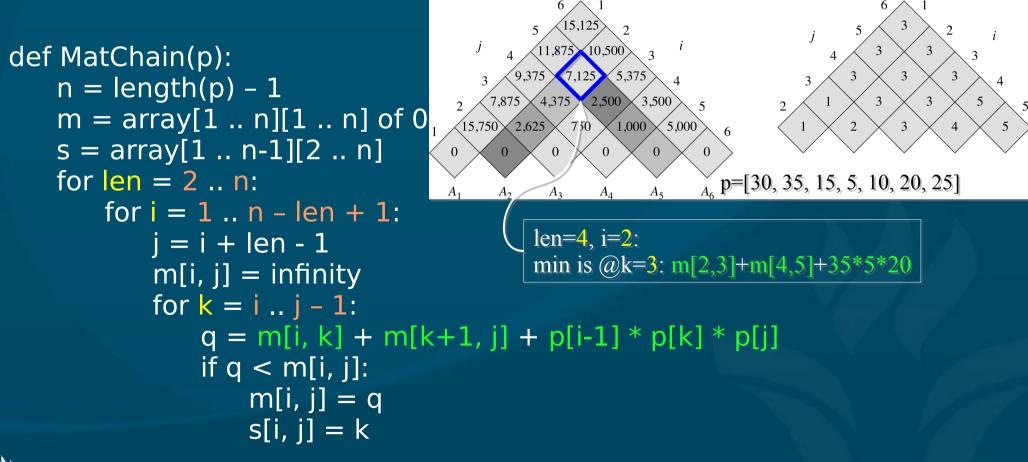
Optimal substructure $[(p_{i-1} \times p_i) \dots (p_{k-1} \times p_k)] * [(p_k \times p_{k+1}) \dots (p_{j-1} \times p_j)]$ As with rod-cutting, consider one split at a time: • Cost if we split the chain i... at k: • Cost(i .. k) + Cost(k+1 .. j) + $(p_{i-1})(p_k)(p_i)$ • Cost of the matrix mult at the split is $p_{i-1} p_{i} p_{i}$ Naive recursive solution: → def MatChain(p, i, j): • if (i == j): return 0 return min(foreach(k in i ... j-1: MatChain(p, i, k) + MatChain(p, k+1, j) + p[i-1] * p[k] * p[j])) \square 2n recursive calls per loop: very inefficient! $\Theta(2^n)$ Smaller chains are computed repeatedly **CMPT231:** dynamic programming

22 Oct 2013

18

Bottom-up solution

■ Taxonomy: index by both start (i) and end (j) ● ⇒ 2D grid of nodes, instead of 1D line



- Rod-cutting problem
- Optimal substructure
 - Naive top-down
 - Top-down with memoisation
 - Bottom-up
- Examples:
 - Fibonacci
 - Matrix-chain multiplication
 - Shortest unweighted path
 - Optimal binary search trees

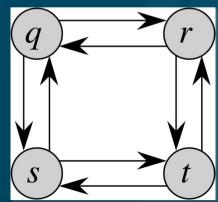
Shortest- and longest-path

Given a set of nodes and (unweighted) edges, find the shortest path between given nodes u, v:

 Optimal substructure: if split path at node w, then we can form the shortest path u → w → v from the shortest paths u → w and w → v

• So we can solve with dynamic programming • What about longest (non-cyclic) path $u \rightarrow v$?

- Just gluing together Longest($u \rightarrow w$) and Longest($w \rightarrow v$) won't work!
- Might not be longest $u \rightarrow v$
- Might have loops



Optimal binary search trees

- BST operations ⊖(h): depth of node in tree
 Given sorted set of keys K = [k₁, ..., k_n] and probabilities P = [p₁, ..., p_n]:
- Minimise expected (weighted avg) search cost
 To handle unsuccessful searches, add dummy keys d₀, ..., d_n as leaves:
 Dummy key d₁ is for all values between (k₁, k₁)
 - Let $q_i = probability$ of d_i : then $\Sigma p + \Sigma q = 1$

Expected search cost = $\Sigma (h(k_i) + 1)p_i + \Sigma (h(d_i) + 1)q_i$

Optimal substructure

As before, consider one split at a time:

- "Split" = choice of root
- To find optimal BST for keys k_i, ..., k_i
 - Consider making k_r the root (i $\leq r \leq j$)
 - Find optimal BST for left subtree k, ..., k, ..., k
 - Find optimal BST for right subtree k_{r+1}, ..., k_i

Demoting a subtree increases depth to each of its nodes by 1: ⇒ increases expected search cost by w(i,j) = Σ^j_{m=i} p_m + Σ^j_{m=i-1} q_m
 Cost o(i,i) = min_i [o(i, r, 1) + o(r+1, i) + w(i, i)]

 $\boxed{Oost e(i,j) = min_{r=i}^{j} [e(i, r-1) + e(r+1, j) + w(i, j)]}$

Optimal BST: example

