
ch15: Dynamic Programmingch15: Dynamic Programming

22 Oct 2013
CMPT231
Dr. Sean Ho
Trinity Western University

22 Oct 2013CMPT231: dynamic programming 2CMPT231: dynamic programmingCMPT231: dynamic programming

Outline for todayOutline for today

 Dynamic programming for optimisation
● Rod-cutting problem
● Optimal substructure

 Naive top-down
 Top-down with memoisation
 Bottom-up

 Examples:
● Fibonacci
● Matrix-chain multiplication
● Shortest unweighted path
● Optimal binary search trees

22 Oct 2013CMPT231: dynamic programming 3CMPT231: dynamic programmingCMPT231: dynamic programming

OptimisationOptimisation

 A large class of real-world problems consist of:
● Find the maximum (or minimum) value of some

goal/cost function, over some search space

 Search space may be discrete or continuous,
low-dimensioned or very high (106 or more) dim

 Goal function may be analytic or some black-box
● May or may not have accessible derivatives

 Exhaustive search is
usually way too slow

Andreas HopfAndreas Hopf

http://www.flickr.com/photos/andreas_hopf/5511322099/in/photostream
http://www.flickr.com/photos/andreas_hopf/5511322099/in/photostream

22 Oct 2013CMPT231: dynamic programming 4CMPT231: dynamic programmingCMPT231: dynamic programming

Dynamic programmingDynamic programming

 “Programming” as in tables, e.g., linear prog.
 Divide-and-conquer approach, but

● Store and re-use solutions to sub-problems

 3 implementation schemes:
● Recursive top-down (inefficient)
● Top-down with memoisation (save sub-results)
● Bottom-up (solve smaller sub-problems first)

 Efficiency depends on:
● Optimal substructure
● Overlapping subproblems

22 Oct 2013CMPT231: dynamic programming 5CMPT231: dynamic programmingCMPT231: dynamic programming

Outline for todayOutline for today

 Dynamic programming for optimisation
● Rod-cutting problem
● Optimal substructure

 Naive top-down
 Top-down with memoisation
 Bottom-up

 Examples:
● Fibonacci
● Matrix-chain multiplication
● Shortest unweighted path
● Optimal binary search trees

22 Oct 2013CMPT231: dynamic programming 6CMPT231: dynamic programmingCMPT231: dynamic programming

Rod-cutting problemRod-cutting problem

 Steel rods of length i can be sold for $pi each

 How to cut a single rod of length n into pieces
so as to maximise revenue?
● Assume cuts are free

 e.g., price table p=[1, 5, 8, 9]. Rod length n=4
● Exhaustive search for max revenue:

$9, $8+1, $1+8, $5+5,
$5+1+1, $1+5+1, $1+1+5,
$1+1+1+1

 Optimal: 2 pieces of length 2 ⇒

 CutRod(p, 4) = r4 = $5+5

22 Oct 2013CMPT231: dynamic programming 7CMPT231: dynamic programmingCMPT231: dynamic programming

Rod-cutting: subproblemsRod-cutting: subproblems

 Optimise one cut at a time, left to right
 Assume the first piece won't be cut again, and

● Recurse/repeat on second piece

 CutRod(p, n) = max1 ≤ i ≤ n(p[i] + CutRod(p, n-i))

● Second piece is a subproblem

 To use dynamic programming, we need:
● Optimal substructure: optimal solution to

subproblem yields optimal solution to problem
● Overlapping subproblems: the subproblems

show up in multiple branches of recursion tree
 (This gives us efficiency / reuse of solutions)

22 Oct 2013CMPT231: dynamic programming 8CMPT231: dynamic programmingCMPT231: dynamic programming

 Prove optimal substructure:

● Let An be an optimal solution for the whole rod

 Let i be location of the first cut in An, and
let An-i be the rest of the cuts in An

● Prove An-i is an opt soln for subprob CR(p, n-i)

 If not, then let Bn-i be a better solution for CR(p, n-i):

➔ price(Bn-i) > price(An-i)

 Then combining Bn = [i, Bn-i] yields a better price:

➔ price(Bn) = p[i] + price(Bn-i)
> p[i] + price(An-i) = price(An)

 This contradicts that An was optimal for whole rod

Optimal substructureOptimal substructure i A_n-ii A_n-i

B_n-iB_n-i

22 Oct 2013CMPT231: dynamic programming 9CMPT231: dynamic programmingCMPT231: dynamic programming

Overlapping subproblemsOverlapping subproblems

 Optimal substructure shows that this recursive
solution works

 To make it faster than exhaustive search,
we need solutions to subproblems to be reusable
● Taxonomy of subproblems:

 Index by length n of rod in subproblem CR(p, n)

● Reuse of optimal solutions to subproblems:
 A solution for rods of length 5 works anywhere within

a longer rod
➔ Does not depend on location, only length

 Solutions to small rods like CR(p, 2) can be reused
many times

➔ Results in saving a lot of computation!

22 Oct 2013CMPT231: dynamic programming 10CMPT231: dynamic programmingCMPT231: dynamic programming

Outline for todayOutline for today

 Dynamic programming for optimisation
● Rod-cutting problem
● Optimal substructure

 Naive top-down
 Top-down with memoisation
 Bottom-up

 Examples:
● Fibonacci
● Matrix-chain multiplication
● Shortest unweighted path
● Optimal binary search trees

22 Oct 2013CMPT231: dynamic programming 11CMPT231: dynamic programmingCMPT231: dynamic programming

(1) Recursive top-down(1) Recursive top-down

 Naive implementation of the recurrence above:
➔ def CutRod(p, n):

● if (n<1): return 0
● q = -infinity
● for i = 1 .. n:

● q = max(q, p[i] + CutRod(p, n-i))
● return q

 Each iteration of loop makes recursive call

 Complexity? Recursion tree?
● T(n) = 2n (Exercise 15.1-1)
● Increasing input by 1 ⇒ double the run time!

 Why so bad? e.g., CutRod(2) is run many times

22 Oct 2013CMPT231: dynamic programming 12CMPT231: dynamic programmingCMPT231: dynamic programming

(2) Top-down with memoisation(2) Top-down with memoisation

 Memoisation: cache previously-computed results
➔ cache = array[0..n] of -infinity
➔ cache[0] = 0
➔ def CutRod(p, n):

● if cache[n] ≠ -infinity:
● return cache[n]

● for i in 1 .. n:
● cache[n] = max(cache[n], p[i] + CutRod(p, n-i))

● return cache[n]

 CutRod(n) is computed only once for each n
● CutRod(n) takes Θ(n) to compute if not cached

● ⇒ Complexity is Σi Θ(i) = Θ(n2)

 But still recursive (slow)

22 Oct 2013CMPT231: dynamic programming 13CMPT231: dynamic programmingCMPT231: dynamic programming

(3) Bottom-up(3) Bottom-up

 Start from smaller subproblems, caching as we go
➔ def CutRod(p, n):

● cache = array[0..n] of -infinity
● cache[0] = 0
● for j = 1 .. n:

● for i = 1 .. j:
● cache[j] = max(cache[j], p[i] + cache[j – i]))

● return cache[n]

 Non-recursive! (function calls are expensive)

 Doubly-nested for loop calculates each CutRod(j)

 Cache stores results of subproblems,
which each are re-used many times

 Complexity: Σj Θ(j) = Θ(n2)

22 Oct 2013CMPT231: dynamic programming 14CMPT231: dynamic programmingCMPT231: dynamic programming

Subproblem graphSubproblem graph

 Nodes are subproblems (e.g., CutRod(n))
 Arrows indicate which other smaller subproblems

are needed to compute each node
● Like recursion tree, but collapsing same nodes

 Bottom-up: order nodes so that all dependencies
are precomputed before we reach a node

 Top-down: depth-first search down to leaves

 Complexity is generally Θ(#nodes + #arrows)

44 33 22 11 00

22 Oct 2013CMPT231: dynamic programming 15CMPT231: dynamic programmingCMPT231: dynamic programming

Outline for todayOutline for today

 Dynamic programming for optimisation
● Rod-cutting problem
● Optimal substructure

 Naive top-down
 Top-down with memoisation
 Bottom-up

 Examples:
● Fibonacci
● Matrix-chain multiplication
● Shortest unweighted path
● Optimal binary search trees

22 Oct 2013CMPT231: dynamic programming 16CMPT231: dynamic programmingCMPT231: dynamic programming

Fibonacci sequenceFibonacci sequence

 Recall: Fn = Fn-1 + Fn-2

● F0 = F1 = 1

 Closed form: Θ(1)
def fib(n):

return round(pow(phi, n))

 Naive top-down: Θ(2n)
def fib(n):

if (n<2): return 1
return fib(n-1) + fib(n-2)

 Bottom-up: Θ(n)
def fib(n):

c = array[0..n] of -1
c[0] = c[1] = 1
for j = 2 .. n:

c[j] = c[j-1] + c[j-2]
return c[n]

 Subproblem graph?

 Top-down w/memo: Θ(n)
c = array[0..n] of -1
c[0] = c[1] = 1
def fib(n):

if (c[n]>0): return c[n]
c[n] = fib(n-1) + fib(n-2)
return c[n]

22 Oct 2013CMPT231: dynamic programming 17CMPT231: dynamic programmingCMPT231: dynamic programming

Matrix-chain multiplicationMatrix-chain multiplication

 Given a chain of n matrices (diff dims) to multiply:

● (A1) (A2) (A3) … (An)

● (p0 x p1) (p1 x p2) (p2 x p3) … (pn-1 x pn)

 #cols of left matrix = #rows of right matrix

 Any parenthesisation is equivalent, but
which one minimises number of operations?

 e.g., (5 x 500) (500 x 2) (2 x 50):

● Try (A1A2)A3: 5*500*2 + 5*2*50 = 5500 ops

● Try A1(A2A3): 500*2*50 + 5*500*50 = 175000

● Exhaustive search of parenthesisations: Θ(2n)

22 Oct 2013CMPT231: dynamic programming 18CMPT231: dynamic programmingCMPT231: dynamic programming

Optimal substructureOptimal substructure

 As with rod-cutting, consider one split at a time:
● Cost if we split the chain i..j at k:

 Cost(i .. k) + Cost(k+1 .. j) + (pi-1)(pk)(pj)

● Cost of the matrix mult at the split is pi-1 pk pj

 Naive recursive solution:
➔ def MatChain(p, i, j):

● if (i == j): return 0
● return min(foreach(k in i .. j-1:

MatChain(p, i, k) + MatChain(p, k+1, j)
+ p[i-1] * p[k] * p[j]))

 2n recursive calls per loop: very inefficient! Θ(2n)

 Smaller chains are computed repeatedly

[(pi-1 x pi) … (pk-1 x pk)] * [(pk x pk+1) … (pj-1 x pj)][(pi-1 x pi) … (pk-1 x pk)] * [(pk x pk+1) … (pj-1 x pj)]

22 Oct 2013CMPT231: dynamic programming 19CMPT231: dynamic programmingCMPT231: dynamic programming

Bottom-up solutionBottom-up solution

 Taxonomy: index by both start (i) and end (j)
● ⇒ 2D grid of nodes, instead of 1D line

def MatChain(p):
n = length(p) – 1
m = array[1 .. n][1 .. n] of 0
s = array[1 .. n-1][2 .. n]
for len = 2 .. n:

for i = 1 .. n – len + 1:
j = i + len - 1
m[i, j] = infinity
for k = i .. j – 1:

q = m[i, k] + m[k+1, j] + p[i-1] * p[k] * p[j]
if q < m[i, j]:

m[i, j] = q
s[i, j] = k

p=[30, 35, 15, 5, 10, 20, 25]p=[30, 35, 15, 5, 10, 20, 25]

len=4, i=2:
min is @k=3: m[2,3]+m[4,5]+35*5*20
len=4, i=2:
min is @k=3: m[2,3]+m[4,5]+35*5*20

22 Oct 2013CMPT231: dynamic programming 20CMPT231: dynamic programmingCMPT231: dynamic programming

Outline for todayOutline for today

 Dynamic programming for optimisation
● Rod-cutting problem
● Optimal substructure

 Naive top-down
 Top-down with memoisation
 Bottom-up

 Examples:
● Fibonacci
● Matrix-chain multiplication
● Shortest unweighted path
● Optimal binary search trees

22 Oct 2013CMPT231: dynamic programming 21CMPT231: dynamic programmingCMPT231: dynamic programming

Shortest- and longest-pathShortest- and longest-path

 Given a set of nodes and (unweighted) edges,
find the shortest path between given nodes u, v:
● Optimal substructure: if split path at node w,

then we can form the shortest path u → w → v
from the shortest paths u → w and w → v

● So we can solve with dynamic programming

 What about longest (non-cyclic) path u → v?
● Just gluing together Longest(u → w) and

Longest(w → v) won't work!
● Might not be longest u → v
● Might have loops

22 Oct 2013CMPT231: dynamic programming 22CMPT231: dynamic programmingCMPT231: dynamic programming

Optimal binary search treesOptimal binary search trees

 BST operations Θ(h): depth of node in tree

 Given sorted set of keys K = [k1, …, kn]
and probabilities P = [p1, …, pn]:

● Minimise expected (weighted avg) search cost

 To handle unsuccessful searches,
add dummy keys d0, …, dn as leaves:

● Dummy key di is for all values between (ki-1, ki)

● Let qi = probability of di: then Σp + Σq = 1

 Expected search cost =
Σ (h(ki) + 1)pi + Σ (h(di) + 1)qi

22 Oct 2013CMPT231: dynamic programming 23CMPT231: dynamic programmingCMPT231: dynamic programming

Optimal substructureOptimal substructure

 As before, consider one split at a time:
● “Split” = choice of root

● To find optimal BST for keys ki, …, kj,

 Consider making kr the root (i ≤ r ≤ j)

 Find optimal BST for left subtree ki, …, kr-1

 Find optimal BST for right subtree kr+1, …, kj

 Demoting a subtree increases depth to each of its
nodes by 1: ⇒ increases expected search cost by
w(i,j) = Σj

m=i pm + Σj
m=i-1 qm

 Cost e(i,j) = minr=i
j [e(i, r-1) + e(r+1, j) + w(i, j)]

22 Oct 2013CMPT231: dynamic programming 24CMPT231: dynamic programmingCMPT231: dynamic programming

Optimal BST: exampleOptimal BST: example

i p q

0 0.05

1 0.15 0.10

2 0.10 0.05

3 0.05 0.05

4 0.10 0.05

5 0.20 0.10

i p q

0 0.05

1 0.15 0.10

2 0.10 0.05

3 0.05 0.05

4 0.10 0.05

5 0.20 0.10

e(i,j) = min
r=i

j [e(i, r-1) + e(r+1, j) + w(i, j)]e(i,j) = min
r=i

j [e(i, r-1) + e(r+1, j) + w(i, j)]
11

22

33

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

