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Quiz 2: 30ptsQuiz 2: 30pts

● Input for all: [ 20, 8, 24, 11, 2, 4, 19, 22, 6, 16 ]
 [10] Demonstrate each step of Heapsort on the input.

How many non-trivial swaps are performed?
 [10] Demonstrate each step of (non-randomised) Quicksort 

on the input. How many non-trivial swaps?
 [10] Demonstrate radix sort on the input with base-4 digits.
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Quiz 2: solutions #1Quiz 2: solutions #1
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Quiz 2: solutions #1-2Quiz 2: solutions #1-2
 Heapsort: 26 swaps

 Quicksort: only 12 swaps!
Pivot=16: 20 8 24 11 2 4 19 22 6 16 Swaps

. 8 20 . . . . . . . . 1

. 8 11 24 20 . . . . . . 1

. 8 11 2 20 24 . . . . . 1

. 8 11 2 4 24 20 . . . . 1

. 8 11 2 4 6 20 19 22 24 . 1

. 8 11 2 4 6 16 19 22 24 20 1

6: 8 11 2 4 6 16 19 22 24 20 .

2: 2 4 6 11 8 . . . . . 3

4: 2 4 . . . . . . . . .

8: . . . 8 11 . . . . . 1

20: . . . . . . 19 20 24 22 1

22: . . . . . . . . 22 24 1

Pivot=16: 20 8 24 11 2 4 19 22 6 16 Swaps

. 8 20 . . . . . . . . 1

. 8 11 24 20 . . . . . . 1

. 8 11 2 20 24 . . . . . 1

. 8 11 2 4 24 20 . . . . 1

. 8 11 2 4 6 20 19 22 24 . 1

. 8 11 2 4 6 16 19 22 24 20 1

6: 8 11 2 4 6 16 19 22 24 20 .

2: 2 4 6 11 8 . . . . . 3

4: 2 4 . . . . . . . . .

8: . . . 8 11 . . . . . 1

20: . . . . . . 19 20 24 22 1

22: . . . . . . . . 22 24 1
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Quiz 2: solutions #3Quiz 2: solutions #3
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Outline for todayOutline for today

 Greedy algorithms
● Example: Activity selection
● Optimal substructure

 Naive recursive solution

● Greedy choice property
 Recursive greedy solution
 Iterative greedy solution

● Example: Knapsack problems
● Example: Huffman coding
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Greedy algorithmsGreedy algorithms

 Another approach to optimisation
● Faster than dynamic programming,

when applicable

 At each decision point, go for immediate gains
● Locally optimal choices ⇒ global optimum

 Not all problems have optimal substructure
● Hybrid optimisation strategies use large jumps 

to get to right “hill”,
then greedy
“hill-climbing”
to get to the top

Andreas HopfAndreas Hopf

http://www.flickr.com/photos/andreas_hopf/5511322099/in/photostream
http://www.flickr.com/photos/andreas_hopf/5511322099/in/photostream
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Problem-solving outlineProblem-solving outline

 Find optimal substructure (e.g., recurrence)
 Convert to naïve recursive solution (code)

● Could then be converted to dynamic prog.

 Use greedy choice to simplify the recurrence
so only one subproblem remains
● Don't have to iterate through all subproblems
● Prove greedy choice yields global optimum!

 Convert to recursive greedy solution

 Convert to iterative greedy solution
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Example: activity selectionExample: activity selection

 Activities S = {a1, …, an} which each
require exclusive use of a shared resource

● Each activity has start/finish times [si, fi)

● Activities are sorted by finish times

 ⇒ Find largest subset of S where
all activities are
non-overlapping

 e.g., a2 and a5

do not overlap:

i s f

1 1 3

2 2 5

3 4 7

4 1 8

5 5 9

6 8 10

7 9 11

8 11 14

9 13 16

i s f

1 1 3

2 2 5

3 4 7

4 1 8

5 5 9

6 8 10

7 9 11

8 11 14

9 13 16

Solutions?Solutions?
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Solving: optimal substructureSolving: optimal substructure

 Let Sij = {ak ∊ S: fi ≤ sk < fk ≤ sj}: all activities that 
start after fi and finish before sj

● Any activity in Sij will be compatible with:

 Any activity that finishes by fi

 Any activity that starts no earlier than sj

 Let Aij be a solution for Sij:
a largest mutually-compatible subset of activities

 Pick an activity ak ∊ Aij, and partition Aij into

● Aik = Aij ∩ Sik: those that finish before ak starts

● Akj = Aij ∩ Skj: those that start after ak finishes

a
i
a
i a
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k a
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Proof of optimal substructureProof of optimal substructure

 Claim: Aik and Akj are optimal solutions for Sik, Skj

 Proof (for Aik): assume not:

● Let A'ik be a better solution:
non-overlapping elements, and |A'ik| > |Aik|.

● Then A'ik ∪ {ak} ∪ Akj would be a solution for Sij, 
and its size is larger than Aij = Aik ∪ {ak} ∪ Akj.

● Contradicts the premise that Aij was optimal.

 ⇒ Optimal substructure: split on ak,
recurse twice on Sik and Skj,
iterate over all choices of ak and pick the best

A
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Naive recursive solutionNaive recursive solution

 Let c[i,j] = size of optimal solution for Sij:

● Splitting on ak yields c[i,j] = c[i,k] + 1 + c[k,j]

● Which choice of ak is best? Naive: try all

 Recurrence: c[i,j] = maxa_k ∈ S_ij (c[i,k] + 1 + c[k,j])

● Base case: if Sij = ∅, then c[i,j] = 0

 Could implement this using dynamic programming
● Fill in 2D table for c[i,j], bottom-up

● Auxiliary table storing the solutions Aij

 With this problem, though, we can do better!
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Outline for todayOutline for today

 Greedy algorithms
● Example: Activity selection
● Optimal substructure

 Naive recursive solution

● Greedy choice property
 Recursive greedy solution
 Iterative greedy solution

● Example: Knapsack problems
● Example: Huffman coding
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Greedy choiceGreedy choice

 Which choice of ak leaves as much as possible of 
the resource available for other activities?
● One which finishes the earliest
● Since activities are sorted by finish time,

just choose the first activity!

 Recurrence simplifies: to find optimal subset of Skj,
include ak, then recurse on
Sk = {ai: si ≥ fk}: those that start after ak finishes

● Don't need to iterate over all choices of ak

 We need to prove the greedy choice is optimal
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Proof of greedy choiceProof of greedy choice

 Let Sk ≠ ∅ with am ∊ Sk having earliest finish time.

● Claim: ∃ optimal soln for Sk which includes am.

 Proof: Let Ak be an optimal solution for Sk.

● If it includes am, then we're done.

 If not, let aj be the first in Ak to finish.

● Swap out am for aj: let A'k = Ak – {aj} ∪ {am}.

 Then A'k is an optimal solution for Sk:

● Size is same as Ak, and

● Elements are non-overlapping: fm ≤ fj

a
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Recursive greedy solutionRecursive greedy solution

 Input: arrays s[], f[], with f[] sorted

● Add a dummy entry f[0] = 0, so that S0 = S.

 For each recursive subproblem Sk,

● Skip over activities that overlap with ak

● Include the first activity that doesn't overlap,
and recurse on the rest:

➔ def ActivitySel(s, f, k, n):
● for m in k+1 .. n:

● if (s[m] ≥ f[k]):
● return {am} ∪ ActivitySel(s, f, m, n)

● return NULL

● Initial call: ActivitySel(s, f, 0, n). (Θ(n)!)
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Iterative greedy solutionIterative greedy solution

 Recursive solution is nearly tail-recursive, easy to 
convert to more efficient iterative solution:

➔ def ActivitySel(s, f):
● A = {a1}
● k = 1
● for m in 2 .. length(f):

● if (s[m] ≥ f[k]):
● A = A ∪ {am}
● k = m

● return A

 Complexity: Θ(n)
● If need to pre-sort on f[], then Θ(n lg n)

i s f

1 1 3

2 2 5

3 4 7

4 1 8
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Greedy vs dynamic prog.Greedy vs dynamic prog.

 Dynamic prog. more general
● Not all problems have greedy property

 Dynamic prog. fills in table bottom-up
● Greedy choice done top-down

 Choice in dyn. prog. needs all smaller subprobs
● Greedy choice is simpler, so can make choice 

before solving subproblem

 Proving the greedy property:
● Assume an optimal solution
● Modify it to include the greedy choice
● Show that it's still optimal
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Optimising for greedy choiceOptimising for greedy choice

 Often need to pre-process input to make the 
greedy choice easier
● Sorted activities by finish time
● Greedy choice can be done in O(1) each time
● Sorting takes O(n lg n)

 If input is dynamically generated
(can't sort whole list in advance), then
● Priority queue: pop the most optimal choice
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Outline for todayOutline for today

 Greedy algorithms
● Example: Activity selection
● Optimal substructure

 Naive recursive solution

● Greedy choice property
 Recursive greedy solution
 Iterative greedy solution

● Example: Knapsack problems
● Example: Huffman coding
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Knapsack problemKnapsack problem

 Fractional knapsack problem:

● n items, each with weight wi and value vi.

● Maximise total value, subject to total weight W
● Can take fractions of an item (think of liquids)

 Greedy soln: sort items by value-to-weight ratio

● Greedy choice: take item with largest vi / wi.

● Last spot may be filled with fractional item
➔ def FractionalKnapsack(v, w, W):

● while totwt < W:
● add next item in decreasing order of value-to-weight

● replace last item with 1-(totwt-W) of itself
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0-1 Knapsack0-1 Knapsack

 Variant that does not allow fractions of an item
 Greedy strategy no longer works!

 Making initial locally-optimal choices locks us out 
of making later globally-optimal choices

 Still possible to solve using dynamic programming 
(Ex 16.2-2)
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Outline for todayOutline for today

 Greedy algorithms
● Example: Activity selection
● Optimal substructure

 Naive recursive solution

● Greedy choice property
 Recursive greedy solution
 Iterative greedy solution

● Example: Knapsack problems
● Example: Huffman coding
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EncodingEncoding

 Given a text with a known set of characters
● Encode each character with a binary codeword

 Fixed-length code: all codewords same length
● “cafe” ⇒ 010 000 101 100

 Variable-length code: some codes lower cost
● “cafe” ⇒ 100 0 1100 1101
● Compression: choose shorter codes for more 

frequent characters

 Prefix code: no code is a prefix of another
● Unique parsing; don't need to delimit chars
● “cafe” ⇒ 100011001101
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Code treesCode trees

 Prefix code ⇒ code tree: binary tree where
nodes represent prefixes; characters are at leaves
● Fixed-length code ⇒ leaves all at same level
● Decoding = walk down the tree

 Cost of a char = depth in tree

 Total cost of encoding a file using a given tree:

● Σc [ freq(c) * depth(c) ]
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Huffman codingHuffman coding

 Build tree bottom-up
● Start with two least-common chars
● Merge to make new subtree with combined freq

 Min-priority queue manages the greedy choice

 Input: array of char nodes with .freq attribs
➔ def huffman(chars):

● Q = new MinQueue(chars)
● for i in 1 .. length(chars)-1:

● z = new Node
● z.left = Q.popmin()
● z.right = Q.popmin()
● z.freq = z.left.freq + z.right.freq
● Q.push(z)

● return Q.popmin()

char freq

a 15

b 5

c 9

d 7

e 18

f 10

char freq

a 15

b 5

c 9

d 7

e 18

f 10
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