
Quiz 2: ch4, 6-8, 11Quiz 2: ch4, 6-8, 11
ch16: Greedy Algorithmsch16: Greedy Algorithms

29 Oct 2013
CMPT231
Dr. Sean Ho
Trinity Western University

Open book, paper notes
No electronic devices

Please show your work

Open book, paper notes
No electronic devices

Please show your work

29 Oct 2013CMPT231: greedy 2CMPT231: greedyCMPT231: greedy

Quiz 2: 30ptsQuiz 2: 30pts

● Input for all: [20, 8, 24, 11, 2, 4, 19, 22, 6, 16]
 [10] Demonstrate each step of Heapsort on the input.

How many non-trivial swaps are performed?
 [10] Demonstrate each step of (non-randomised) Quicksort

on the input. How many non-trivial swaps?
 [10] Demonstrate radix sort on the input with base-4 digits.

29 Oct 2013CMPT231: greedy 3CMPT231: greedyCMPT231: greedy

Quiz 2: solutions #1Quiz 2: solutions #1
initially not
a heap:
initially not
a heap:

2020

22
88

44

66 1616

2424

19191111

2222

heapify(2):
[1 swap]
heapify(2):
[1 swap]

2020

1616
88

44

66 22

2424

19191111

2222

heapify(11):
[1]
heapify(11):
[1]

2020

1616
88

44

66 22

2424

19192222

1111

heapify(8):
[2]
heapify(8):
[2]

2020

1616
2222

44

66 22

2424

19191111

88

heapify(24),
heapify(20):
[1]

heapify(24),
heapify(20):
[1]

2424

1616
2222

44

66 22

2020

19191111

88

swap out 24,
heapify(2):
[3]

swap out 24,
heapify(2):
[3]

2222

22
1616

44

66 2424

2020

19191111

88

swap out 22,
heapify(6)
[3]

swap out 22,
heapify(6)
[3]

2020

22
1616

44

2222 2424

1919

661111

88

swap out 20,
heapify(8)
[2]

swap out 20,
heapify(8)
[2]

1919

22
1616

44

2222 2424

88

661111

2020

swap out 19,
heapify(6)
[3]

swap out 19,
heapify(6)
[3]

1616

22
1111

44

2222 2424

88

191966

2020

swap out 16,
heapify(4)
[3]

swap out 16,
heapify(4)
[3]

1111

22
66 88

44

swap out 11,
heapify(2)
[2]

swap out 11,
heapify(2)
[2]

88

66 22

44

swap out 8,
heapify(4)
[2]

swap out 8,
heapify(4)
[2]

66

44 22

swap out 6,
heapify(2)
[2]

swap out 6,
heapify(2)
[2]

44

22

swap out 4
[1]
swap out 4
[1] 22

1111
44

1616

2222 2424

66

191988

2020

29 Oct 2013CMPT231: greedy 4CMPT231: greedyCMPT231: greedy

Quiz 2: solutions #1-2Quiz 2: solutions #1-2
 Heapsort: 26 swaps

 Quicksort: only 12 swaps!
Pivot=16: 20 8 24 11 2 4 19 22 6 16 Swaps

. 8 20 1

. 8 11 24 20 1

. 8 11 2 20 24 1

. 8 11 2 4 24 20 1

. 8 11 2 4 6 20 19 22 24 . 1

. 8 11 2 4 6 16 19 22 24 20 1

6: 8 11 2 4 6 16 19 22 24 20 .

2: 2 4 6 11 8 3

4: 2 4

8: . . . 8 11 1

20: 19 20 24 22 1

22: 22 24 1

Pivot=16: 20 8 24 11 2 4 19 22 6 16 Swaps

. 8 20 1

. 8 11 24 20 1

. 8 11 2 20 24 1

. 8 11 2 4 24 20 1

. 8 11 2 4 6 20 19 22 24 . 1

. 8 11 2 4 6 16 19 22 24 20 1

6: 8 11 2 4 6 16 19 22 24 20 .

2: 2 4 6 11 8 3

4: 2 4

8: . . . 8 11 1

20: 19 20 24 22 1

22: 22 24 1

29 Oct 2013CMPT231: greedy 5CMPT231: greedyCMPT231: greedy

Quiz 2: solutions #3Quiz 2: solutions #3
1 1 0

0 2 0

1 2 0

0 2 3

0 0 2

0 1 0

1 0 3

1 1 2

0 1 2

1 0 0

1 1 0

0 2 0

1 2 0

0 2 3

0 0 2

0 1 0

1 0 3

1 1 2

0 1 2

1 0 0

20

8

24

11

2

4

19

22

6

16

20

8

24

11

2

4

19

22

6

16

base 4base 4base 4base 4

1 1 0

0 2 0

1 2 0

0 1 0

1 0 0

0 0 2

1 1 2

0 1 2

0 2 3

1 0 3

1 1 0

0 2 0

1 2 0

0 1 0

1 0 0

0 0 2

1 1 2

0 1 2

0 2 3

1 0 3

sort 1sort 1sort 1sort 1

1 0 0

0 0 2

1 0 3

1 1 0

0 1 0

1 1 2

0 1 2

0 2 0

1 2 0

0 2 3

1 0 0

0 0 2

1 0 3

1 1 0

0 1 0

1 1 2

0 1 2

0 2 0

1 2 0

0 2 3

sort 4sort 4sort 4sort 4

0 0 2

0 1 0

0 1 2

0 2 0

0 2 3

1 0 0

1 0 3

1 1 0

1 1 2

1 2 0

0 0 2

0 1 0

0 1 2

0 2 0

0 2 3

1 0 0

1 0 3

1 1 0

1 1 2

1 2 0

sort 16sort 16sort 16sort 16

20

8

24

11

2

4

19

22

6

16

20

8

24

11

2

4

19

22

6

16

2

4

6

8

11

16

19

20

22

24

2

4

6

8

11

16

19

20

22

24

decimaldecimaldecimaldecimal

29 Oct 2013CMPT231: greedy 6CMPT231: greedyCMPT231: greedy

Outline for todayOutline for today

 Greedy algorithms
● Example: Activity selection
● Optimal substructure

 Naive recursive solution

● Greedy choice property
 Recursive greedy solution
 Iterative greedy solution

● Example: Knapsack problems
● Example: Huffman coding

29 Oct 2013CMPT231: greedy 7CMPT231: greedyCMPT231: greedy

Greedy algorithmsGreedy algorithms

 Another approach to optimisation
● Faster than dynamic programming,

when applicable

 At each decision point, go for immediate gains
● Locally optimal choices ⇒ global optimum

 Not all problems have optimal substructure
● Hybrid optimisation strategies use large jumps

to get to right “hill”,
then greedy
“hill-climbing”
to get to the top

Andreas HopfAndreas Hopf

http://www.flickr.com/photos/andreas_hopf/5511322099/in/photostream
http://www.flickr.com/photos/andreas_hopf/5511322099/in/photostream

29 Oct 2013CMPT231: greedy 8CMPT231: greedyCMPT231: greedy

Problem-solving outlineProblem-solving outline

 Find optimal substructure (e.g., recurrence)
 Convert to naïve recursive solution (code)

● Could then be converted to dynamic prog.

 Use greedy choice to simplify the recurrence
so only one subproblem remains
● Don't have to iterate through all subproblems
● Prove greedy choice yields global optimum!

 Convert to recursive greedy solution

 Convert to iterative greedy solution

29 Oct 2013CMPT231: greedy 9CMPT231: greedyCMPT231: greedy

Example: activity selectionExample: activity selection

 Activities S = {a1, …, an} which each
require exclusive use of a shared resource

● Each activity has start/finish times [si, fi)

● Activities are sorted by finish times

 ⇒ Find largest subset of S where
all activities are
non-overlapping

 e.g., a2 and a5

do not overlap:

i s f

1 1 3

2 2 5

3 4 7

4 1 8

5 5 9

6 8 10

7 9 11

8 11 14

9 13 16

i s f

1 1 3

2 2 5

3 4 7

4 1 8

5 5 9

6 8 10

7 9 11

8 11 14

9 13 16

Solutions?Solutions?

29 Oct 2013CMPT231: greedy 10CMPT231: greedyCMPT231: greedy

Solving: optimal substructureSolving: optimal substructure

 Let Sij = {ak ∊ S: fi ≤ sk < fk ≤ sj}: all activities that
start after fi and finish before sj

● Any activity in Sij will be compatible with:

 Any activity that finishes by fi

 Any activity that starts no earlier than sj

 Let Aij be a solution for Sij:
a largest mutually-compatible subset of activities

 Pick an activity ak ∊ Aij, and partition Aij into

● Aik = Aij ∩ Sik: those that finish before ak starts

● Akj = Aij ∩ Skj: those that start after ak finishes

a
i
a
i a

k
a
k a

j
a
j

33

A
ik

A
ik a

k
a
k

33
A
kj

A
kj

29 Oct 2013CMPT231: greedy 11CMPT231: greedyCMPT231: greedy

Proof of optimal substructureProof of optimal substructure

 Claim: Aik and Akj are optimal solutions for Sik, Skj

 Proof (for Aik): assume not:

● Let A'ik be a better solution:
non-overlapping elements, and |A'ik| > |Aik|.

● Then A'ik ∪ {ak} ∪ Akj would be a solution for Sij,
and its size is larger than Aij = Aik ∪ {ak} ∪ Akj.

● Contradicts the premise that Aij was optimal.

 ⇒ Optimal substructure: split on ak,
recurse twice on Sik and Skj,
iterate over all choices of ak and pick the best

A
ik

A
ik a

k
a
k

33
A
kj

A
kj

29 Oct 2013CMPT231: greedy 12CMPT231: greedyCMPT231: greedy

Naive recursive solutionNaive recursive solution

 Let c[i,j] = size of optimal solution for Sij:

● Splitting on ak yields c[i,j] = c[i,k] + 1 + c[k,j]

● Which choice of ak is best? Naive: try all

 Recurrence: c[i,j] = maxa_k ∈ S_ij (c[i,k] + 1 + c[k,j])

● Base case: if Sij = ∅, then c[i,j] = 0

 Could implement this using dynamic programming
● Fill in 2D table for c[i,j], bottom-up

● Auxiliary table storing the solutions Aij

 With this problem, though, we can do better!

29 Oct 2013CMPT231: greedy 13CMPT231: greedyCMPT231: greedy

Outline for todayOutline for today

 Greedy algorithms
● Example: Activity selection
● Optimal substructure

 Naive recursive solution

● Greedy choice property
 Recursive greedy solution
 Iterative greedy solution

● Example: Knapsack problems
● Example: Huffman coding

29 Oct 2013CMPT231: greedy 14CMPT231: greedyCMPT231: greedy

Greedy choiceGreedy choice

 Which choice of ak leaves as much as possible of
the resource available for other activities?
● One which finishes the earliest
● Since activities are sorted by finish time,

just choose the first activity!

 Recurrence simplifies: to find optimal subset of Skj,
include ak, then recurse on
Sk = {ai: si ≥ fk}: those that start after ak finishes

● Don't need to iterate over all choices of ak

 We need to prove the greedy choice is optimal

29 Oct 2013CMPT231: greedy 15CMPT231: greedyCMPT231: greedy

Proof of greedy choiceProof of greedy choice

 Let Sk ≠ ∅ with am ∊ Sk having earliest finish time.

● Claim: ∃ optimal soln for Sk which includes am.

 Proof: Let Ak be an optimal solution for Sk.

● If it includes am, then we're done.

 If not, let aj be the first in Ak to finish.

● Swap out am for aj: let A'k = Ak – {aj} ∪ {am}.

 Then A'k is an optimal solution for Sk:

● Size is same as Ak, and

● Elements are non-overlapping: fm ≤ fj

a
m
a
m

a
j
a
j

33

A
k
A
k

29 Oct 2013CMPT231: greedy 16CMPT231: greedyCMPT231: greedy

Recursive greedy solutionRecursive greedy solution

 Input: arrays s[], f[], with f[] sorted

● Add a dummy entry f[0] = 0, so that S0 = S.

 For each recursive subproblem Sk,

● Skip over activities that overlap with ak

● Include the first activity that doesn't overlap,
and recurse on the rest:

➔ def ActivitySel(s, f, k, n):
● for m in k+1 .. n:

● if (s[m] ≥ f[k]):
● return {am} ∪ ActivitySel(s, f, m, n)

● return NULL

● Initial call: ActivitySel(s, f, 0, n). (Θ(n)!)

29 Oct 2013CMPT231: greedy 17CMPT231: greedyCMPT231: greedy

Iterative greedy solutionIterative greedy solution

 Recursive solution is nearly tail-recursive, easy to
convert to more efficient iterative solution:

➔ def ActivitySel(s, f):
● A = {a1}
● k = 1
● for m in 2 .. length(f):

● if (s[m] ≥ f[k]):
● A = A ∪ {am}
● k = m

● return A

 Complexity: Θ(n)
● If need to pre-sort on f[], then Θ(n lg n)

i s f

1 1 3

2 2 5

3 4 7

4 1 8

5 5 9

6 8 10

7 9 11

8 11 14

9 13 16

i s f

1 1 3

2 2 5

3 4 7

4 1 8

5 5 9

6 8 10

7 9 11

8 11 14

9 13 16

29 Oct 2013CMPT231: greedy 18CMPT231: greedyCMPT231: greedy

Greedy vs dynamic prog.Greedy vs dynamic prog.

 Dynamic prog. more general
● Not all problems have greedy property

 Dynamic prog. fills in table bottom-up
● Greedy choice done top-down

 Choice in dyn. prog. needs all smaller subprobs
● Greedy choice is simpler, so can make choice

before solving subproblem

 Proving the greedy property:
● Assume an optimal solution
● Modify it to include the greedy choice
● Show that it's still optimal

29 Oct 2013CMPT231: greedy 19CMPT231: greedyCMPT231: greedy

Optimising for greedy choiceOptimising for greedy choice

 Often need to pre-process input to make the
greedy choice easier
● Sorted activities by finish time
● Greedy choice can be done in O(1) each time
● Sorting takes O(n lg n)

 If input is dynamically generated
(can't sort whole list in advance), then
● Priority queue: pop the most optimal choice

29 Oct 2013CMPT231: greedy 20CMPT231: greedyCMPT231: greedy

Outline for todayOutline for today

 Greedy algorithms
● Example: Activity selection
● Optimal substructure

 Naive recursive solution

● Greedy choice property
 Recursive greedy solution
 Iterative greedy solution

● Example: Knapsack problems
● Example: Huffman coding

29 Oct 2013CMPT231: greedy 21CMPT231: greedyCMPT231: greedy

Knapsack problemKnapsack problem

 Fractional knapsack problem:

● n items, each with weight wi and value vi.

● Maximise total value, subject to total weight W
● Can take fractions of an item (think of liquids)

 Greedy soln: sort items by value-to-weight ratio

● Greedy choice: take item with largest vi / wi.

● Last spot may be filled with fractional item
➔ def FractionalKnapsack(v, w, W):

● while totwt < W:
● add next item in decreasing order of value-to-weight

● replace last item with 1-(totwt-W) of itself

29 Oct 2013CMPT231: greedy 22CMPT231: greedyCMPT231: greedy

0-1 Knapsack0-1 Knapsack

 Variant that does not allow fractions of an item
 Greedy strategy no longer works!

 Making initial locally-optimal choices locks us out
of making later globally-optimal choices

 Still possible to solve using dynamic programming
(Ex 16.2-2)

29 Oct 2013CMPT231: greedy 23CMPT231: greedyCMPT231: greedy

Outline for todayOutline for today

 Greedy algorithms
● Example: Activity selection
● Optimal substructure

 Naive recursive solution

● Greedy choice property
 Recursive greedy solution
 Iterative greedy solution

● Example: Knapsack problems
● Example: Huffman coding

29 Oct 2013CMPT231: greedy 24CMPT231: greedyCMPT231: greedy

EncodingEncoding

 Given a text with a known set of characters
● Encode each character with a binary codeword

 Fixed-length code: all codewords same length
● “cafe” ⇒ 010 000 101 100

 Variable-length code: some codes lower cost
● “cafe” ⇒ 100 0 1100 1101
● Compression: choose shorter codes for more

frequent characters

 Prefix code: no code is a prefix of another
● Unique parsing; don't need to delimit chars
● “cafe” ⇒ 100011001101

29 Oct 2013CMPT231: greedy 25CMPT231: greedyCMPT231: greedy

Code treesCode trees

 Prefix code ⇒ code tree: binary tree where
nodes represent prefixes; characters are at leaves
● Fixed-length code ⇒ leaves all at same level
● Decoding = walk down the tree

 Cost of a char = depth in tree

 Total cost of encoding a file using a given tree:

● Σc [freq(c) * depth(c)]

29 Oct 2013CMPT231: greedy 26CMPT231: greedyCMPT231: greedy

Huffman codingHuffman coding

 Build tree bottom-up
● Start with two least-common chars
● Merge to make new subtree with combined freq

 Min-priority queue manages the greedy choice

 Input: array of char nodes with .freq attribs
➔ def huffman(chars):

● Q = new MinQueue(chars)
● for i in 1 .. length(chars)-1:

● z = new Node
● z.left = Q.popmin()
● z.right = Q.popmin()
● z.freq = z.left.freq + z.right.freq
● Q.push(z)

● return Q.popmin()

char freq

a 15

b 5

c 9

d 7

e 18

f 10

char freq

a 15

b 5

c 9

d 7

e 18

f 10

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

