
ch22: Breadth-First Searchch22: Breadth-First Search
and Depth-First Searchand Depth-First Search

5 Nov 2013
CMPT231
Dr. Sean Ho
Trinity Western University

5 Nov 2013CMPT231: graph: BFS and DFS 2CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Outline for todayOutline for today

 Huffman coding
 Graph algorithms

● Breadth-first search

 Depth-first search
● Parenthesis structure
● Edge classification
● Topological sort
● Finding strongly-connected components

5 Nov 2013CMPT231: graph: BFS and DFS 3CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

EncodingEncoding

 Given a text with a known set of characters
● Encode each character with a binary codeword

 Fixed-length code: all codewords same length
● “cafe” ⇒ 010 000 101 100

 Variable-length code: some codes lower cost
● “cafe” ⇒ 100 0 1100 1101
● Compression: choose shorter codes for more

frequent characters

 Prefix code: no code is a prefix of another
● Unique parsing; don't need to delimit chars
● “cafe” ⇒ 100011001101

5 Nov 2013CMPT231: graph: BFS and DFS 4CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Code treesCode trees

 Prefix code ⇒ code tree: binary tree where
nodes represent prefixes; characters are at leaves
● Fixed-length code ⇒ leaves all at same level
● Decoding = walk down the tree

 Cost of a char = depth in tree

 Total cost of encoding a file using a given tree:

● Σc [freq(c) * depth(c)]

5 Nov 2013CMPT231: graph: BFS and DFS 5CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Huffman codingHuffman coding

 Build tree bottom-up
● Start with two least-common chars
● Merge to make new subtree with combined freq

 Min-priority queue manages the greedy choice

 Input: array of char nodes with .freq attribs
➔ def huffman(chars):

● Q = new MinQueue(chars)
● for i in 1 .. length(chars)-1:

● z = new Node
● z.left = Q.popmin()
● z.right = Q.popmin()
● z.freq = z.left.freq + z.right.freq
● Q.push(z)

● return Q.popmin()

char freq

a 15

b 5

c 9

d 7

e 18

f 10

char freq

a 15

b 5

c 9

d 7

e 18

f 10

5 Nov 2013CMPT231: graph: BFS and DFS 6CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Outline for todayOutline for today

 Huffman coding
 Graph algorithms

● Breadth-first search

 Depth-first search
● Parenthesis structure
● Edge classification
● Topological sort
● Finding strongly-connected components

5 Nov 2013CMPT231: graph: BFS and DFS 7CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Intro to graph algorithmsIntro to graph algorithms

 Representing graphs: G = (V, E)
● V: vertices/nodes (e.g., via array or linked-list)
● E: edges connecting vertices (directed or un)

 Representing edges:
● Edge list: array/list of (u,v) pairs of nodes
● Adjacency list: indexed by start node

 What about undirected graphs?
 How to find (out)-degree of every vertex?

● Adjacency matrix: A[i,j]=1 if (i,j) is an edge
 What about undirected graphs?
 Weighted graph: A[i,j] not limited to 0/1

11

22 33

44 55

5 Nov 2013CMPT231: graph: BFS and DFS 8CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Graph traversal: breadth-firstGraph traversal: breadth-first

 Traverse: visit each node exactly once
 BFS: overlay a breadth-first tree

● Path in the tree = shortest path
from chosen start node

● BFS tree not necessarily unique

 Graph ≠ tree: could have loops
● ⇒ Need to track which nodes we've seen

 Assign colour: white = unvisited,
grey = on border (some unvisited neighbours),
black = no unvisited neighbours

 Use FIFO queue to manage grey nodes

11

22 33

4444 55

5 Nov 2013CMPT231: graph: BFS and DFS 9CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Breadth-first search: algorithmBreadth-first search: algorithm

 Input: vertex list, adjacency list (linked lists), start
 Output: modify vertex list to add parent pointers

➔ def BFS(V, E, start):
● initialise all vertices to be white, with NULL parent
● initialise start to be grey
● initialise FIFO: Q.push(start)
● while Q.notempty():

● u = Q.pop()
● for each v in E.adj[u]:

● if v.colour == white:
● v.colour = grey
● v.parent = u
● Q.push(v)

● u.colour = black

 Complexity: O(V + E)

//

//

//

//

//

VV

EE

5 Nov 2013CMPT231: graph: BFS and DFS 10CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Outline for todayOutline for today

 Huffman coding
 Graph algorithms

● Breadth-first search

 Depth-first search
● Parenthesis structure
● Edge classification
● Topological sort
● Finding strongly-connected components

5 Nov 2013CMPT231: graph: BFS and DFS 11CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Depth-first searchDepth-first search

 Explore as deep as we can first
● Backtrack to explore other paths
● Recursive algorithm

 Colouring: white = undiscovered
● Grey = discovered
● Black = finished (visited all neighbours)

 Add timestamps on discover and finish

 Overlays a forest on the graph
● Subtree at a node = nodes visited between this

node's discovery and finish

5 Nov 2013CMPT231: graph: BFS and DFS 12CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Depth-first search: algorithmDepth-first search: algorithm
➔ def DFS(G):

● initialise all vertices to be white, with NULL parent
● time = 0
● for u in vertices:

● if u is white: DFS-Visit(G, u)
➔ def DFS-Visit(G,u):

● time++
● u.discovered = time
● u.colour = gray
● for v in u's neighbours:

● if v is white:
● v.parent = u
● DFS-Visit(G, v)

● u.colour = black
● time++
● u.finished = time

1/1/ 6/6/

2/52/5 //

3/43/4 //

startstart
curcur

why not just call DFS-Visit once?why not just call DFS-Visit once?

uu

vv

ww

xx

yy

zz

5 Nov 2013CMPT231: graph: BFS and DFS 13CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

DFS: parenthesis structureDFS: parenthesis structure

 Subtree at a node is visited between the node's
discovery and finish times

 Print a “(u” when we discover a node u,
and “)u” when we finish it:

● Output will be a valid parenthesisation

● e.g., (u (v (w)w)v (x (y)y)x)u (z)z

● but not: (u (v)u)v

 The (discover, finish) intervals
for two vertices are either:
● Completely disjoint, or
● One contained in the other

1/101/10 6/96/9

2/52/5 7/87/8

3/43/4 11/1211/12

xx

yy

zz

uu

vv

ww

5 Nov 2013CMPT231: graph: BFS and DFS 14CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

DFS: white-path theoremDFS: white-path theorem

 From parenthesis structure: u.d < v.d < v.f < u.f
i.e., the (discover, finish) interval for v is
contained / nested within the interval for u,
⟺ v is a descendant of u in the DFS

 White-path theorem:
v is a descendant of u in the DFS ⟺
when u is discovered, there is a path from u → v
with only white vertices uu

vv

5 Nov 2013CMPT231: graph: BFS and DFS 15CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

DFS for edge classificationDFS for edge classification

 Edges in a graph are either:
● Tree edges: in the DFS forest
● Back edges: from a node to an ancestor in the

same DFS tree (including self-loop)
● Forward edges: from a node to a descendant
● Cross edges: between nodes in different

subtrees or different DFS trees

Lemma (22.11):
For directed graphs,
acyclic ⟺ no back edges

Lemma (22.11):
For directed graphs,
acyclic ⟺ no back edges

5 Nov 2013CMPT231: graph: BFS and DFS 16CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Outline for todayOutline for today

 Huffman coding
 Graph algorithms

● Breadth-first search

 Depth-first search
● Parenthesis structure
● Edge classification
● Topological sort
● Finding strongly-connected components

5 Nov 2013CMPT231: graph: BFS and DFS 17CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

DFS for topological sortDFS for topological sort

 Linear ordering of vertices such that
if u → v is an edge, then u comes before v in sort
● Assumes no cycles! (DAG: directed acyclic)
● Applications: dependency resolution,

compiling files, task planning / Gantt chart

 Tweak DFS: as each vertex is finished,
insert it at the head of a linked list
● i.e., sort by decr finish time

 e.g.: z, u, x, y, v, w

 DFS might not be unique,
so topo sort might not be unique

1/101/10 6/96/9

2/52/5 7/87/8

3/43/4 11/1211/12

xx

yy

zz

uu

vv

ww

5 Nov 2013CMPT231: graph: BFS and DFS 18CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Topo sort: exampleTopo sort: example

 Proof of correctness: (u,v) ∊ E ⇒ v.f < u.f

 When DFS explores (u,v), what colour is v?
● v is gray: means v is an ancestor of u

⇒ (u,v) is a back edge ⇒ graph has a loop
● v is white: becomes child: u.d < v.d < v.f < u.f
● v is black: v done, but u not done yet: v.f < u.f

sockssocks

shortsshorts
hosehose pantspants skatesskates leg padsleg pads

t-shirtt-shirt chest padchest pad sweatersweater maskmask catch glovecatch glove blockerblocker

batting glovebatting glove

5 Nov 2013CMPT231: graph: BFS and DFS 19CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

DFS for connected componentsDFS for connected components

 Largest completely-connected set of vertices:
● Every vertex in the component has a path

to every other vertex in the component

 Algorithm:
● Compute DFS(G) to find finishing times
● Let GT (transpose) be G with all edges reversed
● Compute DFS(GT) starting at vertex with highest

finishing time from step 1
● ⇒ Each tree in DFS(GT) is a separate component

..

5 Nov 2013CMPT231: graph: BFS and DFS 20CMPT231: graph: BFS and DFSCMPT231: graph: BFS and DFS

Connected componentsConnected components

 Original graph G
and DFS
(DFS tree shaded)

 Transpose graph
GT and DFS(GT)
● Start DFS at

highest-finish
(b.fin == 16)

 Combine vertices:
component graph

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

