ch22: Breadth-First Search
and Depth-First Search

5 Nov 2013

CMPT231

Dr. Sean Ho

Trinity Western University

W)

= Z TRINITY
\(WWFSTFRN
0

1 INTVFRSITY

Outline for today

m Huffman coding
®m Graph algorithms
Breadth-first search
m Depth-first search
Parenthesis structure
Edge classification
Topological sort
Finding strongly-connected components

)

\‘r TRINITY
WAWFSTFRN
1 INTVFRSITY CMPT231: graph: BFS and DFS 5 Nov 2013

Fixed-length codeword
Variable-length codeword 0 101 100 111 1101 1100

|
E n c O d I n g Frequency (in thousands) 45 13 12 16 9 5
000 001 010 o011 100 101

m Given a text with a known set of characters
Encode each character with a binary codeword

m Fixed-length code: all codewords same length
“cafe” = 010 000 101 100

m Variable-length code: some codes lower cost
“cafe” = 1000 1100 1101

Compression: choose shorter codes for more
frequent characters

m Prefix code: no code is a prefix of another
Unique parsing; don't need to delimit chars
™" “cafe” = 100011001101

= 2 TRINITY
\(\WWFSTFRN
e e & A V4 CMPT231: graph: BFS and DFS 5 Nov 2013 3

Code trees

m Prefix code = code tree: binary tree where
nodes represent prefixes; characters are at leaves

Fixed-length code = leaves all at same level

Decoding = walk down the tree
Cost of a char = depth In tree
m Total cost of encoding a file using a given tree:

2_[freq(c) * depth(c)]
(109

0 1

(36) 14

0 l 0

58) 28) 149

0 1 0 1 0 1

:45] [b:13] [e:12] [a:16) [e9] [£:5] cii2] p3] (14) [a16

0 1

[£:5] [e9]

W)
= 2Z2TRINNTYV
\(A\AIECTEDRNT
|

1 TN EDCITV CMPT231: graph: BFS and DFS 5 Nov 2013

Huffman coding

m Build tree bottom-up

Start with two least-common chars

Merge to make new subtree with combined freq
m Min-priority gueue manages the greedy choice

m |[nput: array of char nodes with .freq attribs
> def huffman(chars):

e Q = new MinQueue(chars) char | freq

e foriin1l..length(chars)-1: a | 13
e z =new Node b 3
e z.left = Q.popmin() e S
e z.right = Q.popmin() d L
« z.freq = z.left.freq + z.right.freq : 13

e Q.push(z)
e return Q.popmin()

»
= Z TRINITY
‘(A\ATFCTEFR NI
|

1 INTVFRSITY CMPT231: graph: BFS and DFS 5 Nov 2013

Outline for today

= Huffman coding
®m Graph algorithms
Breadth-first search
m Depth-first search
Parenthesis structure
Edge classification
Topological sort
Finding strongly-connected components

)

jr TRINITY
A\AFCTFR NI
1y INmERCITYV CMPT231: graph: BFS and DFS 5 Nov 2013

)
=
A

Intro to graph algorithms

m Representing graphs: G = (V, E)
V: vertices/nodes (e.qg., via array or linked-list)
E: edges connecting vertices (directed or un)
m Representing edges:
Edge list: array/list of (u,v) pairs of nodes

Adjacency list: indexed by start node
+ What about undirected graphs?
+ How to find (out)-degree of every vertex?
Adjacency matrix: Alil,j]=1if (i,}) Is an edge
+ What about undirected graphs?
+ Weighted graph: Ali,j] not limited to 0/1

P
r TRINITY

WAWFSTFRN

1 INTVFRSITY CMPT231: graph: BFS and DFS 5 Nov 2013 7

Graph traversal: breadth-first

® Traverse: visit each node exactly once
m BFS: overlay a breadth-first tree

Path in the tree = shortest path
from chosen start node

BFS tree not necessarily unique
®m Graph # tree: could have loops
= Need to track which nodes we've seen

m Assign colour: white = unvisited,
grey = on border (some unvisited neighbours),
black = no unvisited neighbours

m Use FIFO queue to manage grey nodes
l‘)\;‘TRIT\HTV
‘(\MF'CTEDT\I

1 INTVFRSITY

CMPT231: graph: BFS and DFS 5 Nov 2013 8

Breadth-first search: algorithm

m |Input: vertex list, adjacency list (linked lists), start

m Output: modify vertex list to add parent pointers

> def BFS(V, E, start):
vV — e Initialise all vertices to be white, with NULL parent
e Initialise start to be grey
e Initialise FIFO: Q.push(start)
V. e while Q.notempty():
* U= Q.pop()
e for each v in E.adj[u]:
E < e |f v.colour == white:
e v.colour = grey
e V.parent =u
\ e Q.push(v)
e u.colour = black

m Complexity: O(V + E)

»
= 27 TRINITY
\(WFESTFRN
T 1 INTVFRSITY

CMPT231: graph: BFS and DFS 5 Nov 2013 9

Outline for today

= Huffman coding
® Graph algorithms
Breadth-first search
m Depth-first search
Parenthesis structure
Edge classification
Topological sort
Finding strongly-connected components

)

jr TRINITY
A\AFCTFR NI
7y mnEpaTY CMPT231: graph: BFS and DFS 5 Nov 2013 10

Depth-first search

m Explore as deep as we can first
Backtrack to explore other paths
Recursive algorithm
m Colouring: white = undiscovered
Grey = discovered
Black = finished (visited all neighbours)
m Add timestamps on discover and finish
m Overlays a forest on the graph
Subtree at a node = nodes visited between this
node's discovery and finish

W)
= Z TRINITY
‘(A\ATFCTEFR NI
0

1 INTVFRSITY CMPT231: graph: BFS and DFS 5 Nov 2013 11

Depth-first search: algorithm

> def DFS(G):
e initialise all vertices to be white, with NULL parent
e time =20
e for uin vertices: - why not just call DFS-Visit once?
e if uis white: DFS-Visit(G, u)
> def DFS-Visit(G,u):
e time++
u.discovered = time
u.colour = gray
for v in u's neighbours:
e if vis white:
e vV.parent = u
e DFS-Visit(G, v)
u.colour = black
time++
u.finished = time

start

cur

WFSTFRN
1 INTVFRSITY

WP
= 2Z TRINITY
‘(CMPT231: graph: BFS and DFS 5 Nov 2013

12

DFS: parenthesis structure

m Subtree at a node is visited between the node's
discovery and finish times

m Print a “(" when we discover a node u,
and “) " when we finish it:

Output will be a valid parenthesisation

e.g., (GG GGG,

but not: ((),), u ‘.ED'@
m The (discover, finish) intervals

. . C25 D C 78 D
for two vertices are either: Y y
Completely disjoint, or N> D)
" One contained in the other
= Z TRINITY
‘o(WESTERN CMPT231: graph: BFS and DFS 5 Nov 2013 13

1 INTVFRSITY

DFS: white-path theorem

®m From parenthesis structure: u.d < v.d < v.f < u.f
I.e., the (discover, finish) interval for v is
contained / nested within the interval for u,
< Vv IS a descendant of u in the DFS

® White-path theorem:
v IS a descendant of u in the DFS <
when u Is discovered, there is a path from u — v
with only white vertices

W)
= Z TRINITY
\(\ATFCTFEFRNT
|

1 INTVFRSITY CMPT231: graph: BFS and DFS 5 Nov 2013

14

DFS for edge classification

m Edges in a graph are either:
Tree edges: in the DFS forest

Back edges: from a node to an ancestor in the
same DFS tree (including self-loop)

Forward edges: from a node to a descendant

Cross edges: between nodes in different
subtrees or different DFS trees

Lemma (22.11):
For directed graphs,
acyclic < no back edges

jr TRINITY
\AFSTFR N
1 INTVFRSITY CMPT231: graph: BFS and DFS 5 Nov 2013 15

Outline for today

= Huffman coding
® Graph algorithms
Breadth-first search
m Depth-first search
Parenthesis structure
Edge classification
Topological sort
Finding strongly-connected components

)

jr TRINITY
A\AFCTFR NI
7y mnEpaTY CMPT231: graph: BFS and DFS 5 Nov 2013 16

DFS for topological sort

m Linear ordering of vertices such that
If u = vis an edge, then u comes before v in sort

Assumes no cycles! (DAG: directed acyclic)

Applications: dependency resolution,
compiling files, task planning / Gantt chart

m Tweak DFS: as each vertex is finished,
Insert it at the head of a linked list

l.e., sort by decr finish time * ‘Eb'm
meg..Z, u X,VY,V, W <>
C 314

y

m DFS might not be unique,

C_ 78
so topo sort might not be unique <D
&
= 2 TRINITY
‘(\MI:‘CTFDT\I

1 TN EDCITV CMPT231: graph: BFS and DFS 5 Nov 2013 17

Topo sort: example

leg pads)

chest pad | »{ sweater | » mask »{catch glove

_batting glove

m Proof of correctness: (u,v) € E = v.f < u.f
® \WWhen DFS explores (u,v), what colour is v?

V IS gray: means Vv is an ancestor of u
= (u,v) Is a back edge = graph has a loop

v IS white: becomes child: u.d < v.d < v.f < u.f
v is black: v done, but u not done yet: v.f < u.f

U
= 2 TRINITY
‘(WFSTERN
0

1 INTVFRSITY CMPT231: graph: BFS and DFS 5 Nov 2013 18

DFS for connected components

m Largest completely-connected set of vertices:

Every vertex in the component has a path
to every other vertex in the component

m Algorithm:
Compute DFS(G) to find finishing times
Let G' (transpose) be G with all edges reversed

Compute DFS(GT) starting at vertex with highest
finishing time from step 1

. ~#7 Each tree in DFS(GT) is a separate component

‘(\AFCSTER NI
7 INI DIV CMPT231: graph: BFS and DFS 5 Nov 2013 19

m Original graph G
and DFS
(DFS tree shaded)

® Transpose graph
G" and DFS(GT)

Start DFS at
highest-finish
(b.fin == 16)

m Combine vertices:
) component graph
W9

= Z TRINITVY
\(\AJFSTEFR NI

I INTIVFRAITY

CMPT231: graph: BFS and DFS 5 Nov 2013

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

