ch22: Breadth-First Search and Depth-First Search

5 Nov 2013 CMPT231 Dr. Sean Ho Trinity Western University

Huffman coding Graph algorithms Breadth-first search Depth-first search • Parenthesis structure Edge classification Topological sort

Finding strongly-connected components

Encoding

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

3

Given a text with a known set of characters Encode each character with a binary codeword Fixed-length code: all codewords same length • "cafe" ⇒ 010 000 101 100 Variable-length code: some codes lower cost • "cafe" ⇒ 100 0 1100 1101 Compression: choose shorter codes for more frequent characters Prefix code: no code is a prefix of another • Unique parsing; don't need to delimit chars • "cafe" \Rightarrow 100011001101 CMPT231: graph: BFS and DFS 5 Nov 2013

Code trees

Prefix code ⇒ code tree: binary tree where nodes represent prefixes; characters are at leaves
 Fixed-length code ⇒ leaves all at same level
 Decoding = walk down the tree
 Cost of a char = depth in tree
 Total cost of encoding a file using a given tree:

Huffman coding

Build tree bottom-up

- Start with two least-common chars
- Merge to make new subtree with combined freq
 Min-priority queue manages the greedy choice
 Input: array of char nodes with .freq attribs
 - → def huffman(chars):
 - **Q** = new MinQueue(chars)
 - for i in 1 .. length(chars)-1:
 - z = new Node
 - z.left = Q.popmin()
 - z.right = Q.popmin()
 - z.freq = z.left.freq + z.right.freq
 - Q.push(z)
 - return Q.popmin()

char	freq		
a	15		
b	5		
С	9		
d	7		
e	18		
f	10		

CMPT231: graph: BFS and DFS

Huffman coding Graph algorithms Breadth-first search Depth-first search Parenthesis structure Edge classification Topological sort Finding strongly-connected components

Intro to graph algorithms

Representing graphs: G = (V, E)V: vertices/nodes (e.g., via array or linked-list) • E: edges connecting vertices (directed or un) Representing edges: Edge list: array/list of (u,v) pairs of nodes • Adjacency list: indexed by start node What about undirected graphs? 4 5 How to find (out)-degree of every vertex? • Adjacency matrix: A[i,j]=1 if (i,j) is an edge What about undirected graphs? Weighted graph: A[i,j] not limited to 0/1

3

Graph traversal: breadth-first

Traverse: visit each node exactly once BFS: overlay a breadth-first tree • Path in the tree = shortest path 2 from chosen start node BFS tree not necessarily unique • Graph \neq tree: could have loops ■ ⇒ Need to track which nodes we've seen Assign colour: white = unvisited, grey = on border (some unvisited neighbours), **black** = no unvisited neighbours

Use FIFO queue to manage grey nodes

3

Breadth-first search: algorithm

Input: vertex list, adjacency list (linked lists), start
 Output: modify vertex list to add parent pointers

→ def BFS(V, E, start):

- initialise all vertices to be white, with NULL parent
 - initialise start to be grey
 - initialise FIFO: Q.push(start)
 - while Q.notempty():
 - u = Q.pop()
 - for each v in E.adj[u]:
 - if v.colour == white:
 - v.colour = grey
 - v.parent = u
 - Q.push(v)

CMPT231: graph: BFS and DFS

• u.colour = black

Complexity: O(V + E)

E

Huffman coding Graph algorithms Breadth-first search Depth-first search Parenthesis structure • Edge classification Topological sort

Depth-first search

Explore as deep as we can first Backtrack to explore other paths Recursive algorithm Colouring: white = undiscovered Grey = discovered Black = finished (visited all neighbours) Add timestamps on discover and finish Overlays a forest on the graph Subtree at a node = nodes visited between this node's discovery and finish

Depth-first search: algorithm

- → def DFS(G):
 - initialise all vertices to be white, with NULL parent
 - time = 0
 - for u in vertices:
 - if u is white: DFS-Visit(G, u)
- → def DFS-Visit(G,u):
 - time++
 - u.discovered = time
 - u.colour = gray
 - for v in u's neighbours:
 - if v is white:
 - v.parent = u
 - **DFS-Visit**(G, v)
 - u.colour = black
 - time++
 - u.finished = time

why not just call DFS-Visit once?

DFS: parenthesis structure

- Subtree at a node is visited between the node's discovery and finish times
- Print a "(" when we discover a node u, and ")" when we finish it:
 - Output will be a valid parenthesisation
 - e.g., $(_{u} (_{v} (_{w})_{w})_{v} (_{x} (_{y})_{y})_{x})_{u} (_{z})_{z}$
 - but not: $(_u (_v)_u)_v$
- The (discover, finish) intervals for two vertices are either:
 - Completely disjoint, or
- One contained in the other

DFS: white-path theorem

■ From parenthesis structure: u.d < v.d < v.f < u.f i.e., the (discover, finish) interval for v is contained / nested within the interval for u, ⇔ v is a descendant of u in the DFS

White-path theorem:
 v is a descendant of u in the DFS ↔
 when u is discovered, there is a path from u → v
 with only white vertices

DFS for edge classification

Edges in a graph are either:

- Tree edges: in the DFS forest
- Back edges: from a node to an ancestor in the same DFS tree (including self-loop)
- Forward edges: from a node to a descendant

 Cross edges: between nodes in different subtrees or different DFS trees

> Lemma (22.11): For directed graphs, acyclic ⇔ no back edges

Huffman coding Graph algorithms Breadth-first search Depth-first search Parenthesis structure Edge classification Topological sort

DFS for topological sort

Linear ordering of vertices such that if $u \rightarrow v$ is an edge, then u comes before v in sort • Assumes no cycles! (DAG: directed acyclic) Applications: dependency resolution, compiling files, task planning / Gantt chart Tweak DFS: as each vertex is finished, insert it at the head of a linked list 1/10 6/9 i.e., sort by decr finish time e.g.: z, u, x, y, v, w 2/57/8 DFS might not be unique, so topo sort might not be unique 3/4

Topo sort: example

 Proof of correctness: (u,v) ∈ E ⇒ v.f < u.f
 When DFS explores (u,v), what colour is v?
 v is gray: means v is an ancestor of u ⇒ (u,v) is a back edge ⇒ graph has a loop
 v is white: becomes child: u.d < v.d < v.f < u.f
 v is black: v done, but u not done yet: v.f < u.f

18

DFS for connected components

Largest completely-connected set of vertices:

 Every vertex in the component has a path to every other vertex in the component

Algorithm:

- Compute DFS(G) to find finishing times
- Let G^T (transpose) be G with all edges reversed
- Compute DFS(G^T) starting at vertex with highest finishing time from step 1

 TRINITY
 Each tree in DFS(G^T) is a separate component

 WESTERN
 CMPT231: graph: BFS and DFS
 5 Nov 2013
 19

Connected components

(a)

 Original graph G and DFS (DFS tree shaded)

Transpose graph G^T and DFS(G^T)

 Start DFS at highest-finish (b.fin == 16)

Combine vertices: component graph ^(c)

CMPT231: graph: BFS and DFS