
ch23: Minimum Spanning Treech23: Minimum Spanning Tree
ch24: Single-Sourcech24: Single-Source

Shortest PathShortest Path

12 Nov 2013
CMPT231
Dr. Sean Ho
Trinity Western University

12 Nov 2013CMPT231: minimum spanning tree 2CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Outline for todayOutline for today

 Minimum spanning tree
● Generic solution outline
● Kruskal's algorithm (builds a forest)
● Prim's algorithm (builds a tree)
● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm (neg weight allowed)
● Special case if no cycles (DAG)
● Dijkstra's algorithm (no neg weight)

12 Nov 2013CMPT231: minimum spanning tree 3CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Minimum spanning treeMinimum spanning tree

 Given a connected, undirected graph G=(V,E)
● with weights w(u,v) on each edge (u,v) ∊ E

 Find tree T ⊆ E that
● Connects all vertices
● Minimising total weight

w(T) = ΣT w(u,v)

 Why must T be a tree? # edges in T? Unique?

 Applications: elec wiring in Moravia (Borůvka)
● Utilities: gas/elec/water, Internet routing
● Image analysis, registration, handwriting recog

12 Nov 2013CMPT231: minimum spanning tree 4CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Generic MST solution outlineGeneric MST solution outline

 Build up solution A one edge at a time:
 Start with A = ∅
 while A is not a spanning tree:

➔ find a safe edge (u,v) to add
➔ add it to A

● Loop iterates exactly |V|-1 times

 What do we mean by a safe edge (u,v)?
● if A is a subset of a MST, then

A ∪ (u,v) is still a subset of some MST
● So adding (u,v) to A doesn't prevent us from

finding a MST

 How do we find safe edges?

12 Nov 2013CMPT231: minimum spanning tree 5CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Safe edges across the cutSafe edges across the cut

 Let A ⊆ E be a subset of some MST:
● Let (S, V-S) be a cut: partitions the vertices
● An edge (u,v) crosses the cut iff u ∊ S, v ∊ V-S
● A cut respects A iff no edge in A crosses the cut
● An edge is a light edge crossing the cut iff its

weight is minimum over all edges crossing cut

 Theorem: Any light edge (u,v)
crossing a cut (S, V-S)
that respects A
⇒ (u,v) is a safe edge for A

solid lines: T
highlight: path u → v
solid lines: T
highlight: path u → v

12 Nov 2013CMPT231: minimum spanning tree 6CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Proof of safe edge theoremProof of safe edge theorem

 Proof by “cut-and-paste”:
● Let T be a MST such that A ⊆ T
● If (u,v) ∉ T, modify T so it is

 T is a tree ⇒ ∃ unique path u → v

 Path must cross the cut (S,V-S):
pick a crossing edge, call it (x,y)
● Since cut respects A, (x,y) ∉ A

 (u,v) is a light edge crossing cut ⇒ w(u,v) ≤ w(x,y)

 Swap out edge: let T' = T – {(x,y)} ∪ {(u,v)}:
● w(T') ≤ w(T), so T' is also a MST
● A ∪ {(u,v)} ⊆ T', so (u,v) is safe for A

12 Nov 2013CMPT231: minimum spanning tree 7CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Outline for todayOutline for today

 Minimum spanning tree
● Generic solution
● Kruskal's algorithm
● Prim's algorithm
● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm
● Special case if no cycles (DAG)
● Dijkstra's algorithm

12 Nov 2013CMPT231: minimum spanning tree 8CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Kruskal's algorithmKruskal's algorithm

 Each vertex starts as its own component
 Merge components by choosing light edges

● Scan edge list in increasing order of weight

 Use disjoint-set ADT to find crossing edges
 Kruskal(V, E, w):

➔ A = ∅
➔ for each v ∊ V: MakeSet(v)
➔ sort E by weight w
➔ for each (u,v) ∊ E in order:

● if FindSet(u) ≠ FindSet(v): // crossing, so safe
● A = A ∪ {(u,v)}
● Union(u, v)

➔ return A

12 Nov 2013CMPT231: minimum spanning tree 9CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Kruskal: running timeKruskal: running time

 Init components: |V| * MakeSet
 Sort edge list by weight: |E| lg(|E|)

 Main for loop: |E| * FindSet, and |V| * Union

 Disjoint-set forest with union by rank and path
compression (see ch21):
● FindSet and Union are O(α(V))

 α() is the inverse of the Ackermann function;
very slow growing, α(n) ≤ 4 for all reasonable n

● ⇒ O(V + E lg E + E α(V) + V α(V)) = O(E lg E)
 note that |V| - 1 ≤ |E| ≤ |V|2

● Even better if edges pre-sorted: O(E α(V)),
essentially linear time in |E|

12 Nov 2013CMPT231: minimum spanning tree 10CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Outline for todayOutline for today

 Minimum spanning tree
● Generic solution
● Kruskal's algorithm
● Prim's algorithm
● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm
● Special case if no cycles (DAG)
● Dijkstra's algorithm

12 Nov 2013CMPT231: minimum spanning tree 11CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Prim's algorithmPrim's algorithm

 Start from arbitrary root r
 Build tree by adding light edges

crossing (VA, V-VA)

● VA = vertices incident on A

 Use priority queue Q to store vertices in V-VA:

● key (priority) of vertex v is min{w(u,v): u ∊ VA}

 So ExtractMin() returns v such that
(u,v) is a light edge crossing (VA, V-VA)

 At each iteration, A is always a tree, and
 A = {(v, v.parent): v ∊ V – {r} – Q}
 Final MST is encoded in the parent links

12 Nov 2013CMPT231: minimum spanning tree 12CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Prim: pseudocodePrim: pseudocode
 Prim(V, E, w, r):

➔ Q = new PriorityQueue(V)
➔ DecreaseKey(Q, r, 0) // set r.key = 0
➔ while Q not empty:

● u = ExtractMin(Q)
● for each v ∊ Adj(u):

● if v ∊ Q and w(u,v) < v.key:
● v.parent = u
● DecreaseKey(Q, v, w(u,v))

v key prt

a ∞ -

b ∞ -

c ∞ -

d ∞ -

e ∞ -

f ∞ -

g ∞ -

h ∞ -

i ∞ -

v key prt

a ∞ -

b ∞ -

c ∞ -

d ∞ -

e ∞ -

f ∞ -

g ∞ -

h ∞ -

i ∞ -

12 Nov 2013CMPT231: minimum spanning tree 13CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Prim: running timePrim: running time

 Initialise queue: |V| * Insert
 1 * DecreaseKey on root

 Main loop: |V| * ExtractMin + O(E) * DecreaseKey

 Using binary max-heaps to implement queue:
● Insert, ExtractMin, DecreaseKey are all O(lg V)
● ⇒ O(V lg V + lg V + V lg V + E lg V)
● = O(E lg V)

 Using Fibonacci heaps (ch19) instead,
DecreaseKey can be done in O(1) amortised time
● ⇒ O(V lg V + E)

12 Nov 2013CMPT231: minimum spanning tree 14CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Outline for todayOutline for today

 Minimum spanning tree
● Generic solution
● Kruskal's algorithm
● Prim's algorithm
● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm
● Special case if no cycles (DAG)
● Dijkstra's algorithm

12 Nov 2013CMPT231: minimum spanning tree 15CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Uniqueness of MSTUniqueness of MST

 In general, there may be multiple MSTs for a graph
 (p.630, 23.1-6): If every cut of the graph has a

unique light edge crossing it, then MST is unique:
● Let T, T' be two MSTs of the graph
● Let (u,v) ∊ T. We want to show (u,v) ∊ T'

 T is a tree ⇒ T – {(u,v)} gives a cut: call it (S, V-S)

 (u,v) is a light edge crossing (S, V-S) (ex 23.1-3)

 T' must cross the cut, too: call its edge (x, y)
● (x,y) is also a light edge crossing (S, V-S)

 By assumption, the light edge is unique
● Hence (u,v) = (x,y), and so (u,v) ∊ T'

12 Nov 2013CMPT231: minimum spanning tree 16CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Outline for todayOutline for today

 Minimum spanning tree
● Generic solution
● Kruskal's algorithm
● Prim's algorithm
● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm
● Special case if no cycles (DAG)
● Dijkstra's algorithm

12 Nov 2013CMPT231: minimum spanning tree 17CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Shortest-path problemsShortest-path problems

 Input: directed graph G=(V, E), edge weights w
 Task: Find shortest paths between vertices

● For a path p = (v0, …, vk): w(p) = Σ w(vi-1, vi)

● Shortest-path weight δ(u,v) = min(w(p))
 (or ∞ if v is not reachable from u)

 Shortest-path not always unique

 Organised as tree rooted at source

ww

δδ

12 Nov 2013CMPT231: minimum spanning tree 18CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Applications of shortest-pathApplications of shortest-path

 GPS/maps: turn-by-turn directions
● All-pairs: optimise a fleet of trucks
● Logistics / operations research

 Networking: optimal routing

 Robotics, self-driving: path planning
 Layout: factory/plant, VLSI chip design

 “Six degrees”: path to a celebrity

 Solving puzzles a la Rubik's Cube:
● V = states, E = transitions/moves

Willow GarageWillow Garage

Intel HaswellIntel Haswell

http://www.willowgarage.com/blog/2009/09/04/robot-comics-path-planning
http://www.willowgarage.com/blog/2009/09/04/robot-comics-path-planning
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-processor-family.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-processor-family.html

12 Nov 2013CMPT231: minimum spanning tree 19CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Shortest-path variantsShortest-path variants

 Single-source: fix source s ∊ V, and find shortest
paths from s to every other vertex v ∊ V

 Single-destination: similarly for destination
 Single-pair: given u,v ∊ V, find shortest path

● No better way known than using single-source

 All-pairs: simultaneously find shortest paths for all
possible sources and destinations (ch25)

 Negative-weight edges: usually allowable
● As long as there are no net-negative cycles!
● Cycles with net weight ≥0 don't help, either

12 Nov 2013CMPT231: minimum spanning tree 20CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Generic outline of solutionsGeneric outline of solutions

 Output: for each vertex v ∊ V,
● v.d: shortest-path estimate

 Initialised to ∞ (except s.d=0). Always ≥ δ(s,v), and
progressively reduced until v.d = δ(s,v) at solution

● v.parent: links form shortest-path tree

 Edge relaxation: can we improve the shortest-path
estimate for v by using the edge (u,v)?

 Relax(u, v, w):
➔ if v.d > u.d + w(u,v):

● v.d = u.d + w(u,v)
● v.parent = u

 All our single-source shortest-path algorithms start
by initialising v.d, v.parent, then relaxing edges

12 Nov 2013CMPT231: minimum spanning tree 21CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Optimal substructureOptimal substructure

 Any subpath of a shortest path is a shortest path:
● Cut-and-paste proof:

● Let p = pux + pxy + pyv be a shortest path u→v:

 δ(u,v) = w(p) = w(pux) + w(pxy) + w(pyv)

● Let p'xy be a shorter path x→y: w(p'xy) < w(pxy)

● Then we can build a shorter path p' for u→v:
 p' = pux + p'xy + pyv

 w(p') = w(pux) + w(p'xy) + w(pyv)
< w(pux) + w(pxy) + w(pyv) = w(p)

● This contradicts the assumption that p was the
shortest path for u→v

12 Nov 2013CMPT231: minimum spanning tree 22CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Properties / lemmasProperties / lemmas

 Triangle inequality: δ(s,v) ≤ δ(s,u) + w(u,v)
 Upper-bound property: v.d ≥ δ(s,v) always,

and once v.d = δ(s,v), it never increases again
● Relaxing an edge can only lower v.d

 No-path property: if δ(s,v)=∞, then v.d=∞ always
 Convergence property:

if s ↝ u → v is a shortest path with u.d = δ(s,u),
then after Relax(u,v,w), we will have v.d = δ(s,v)
● By optimal substruct: δ(s,u) + w(u,v) = δ(s,v)

 Path relaxation property:
if p = (v0=s, …, vk) is a shortest path to vk, then
after relaxing its edges in order: vk.d = δ(s,vk)

12 Nov 2013CMPT231: minimum spanning tree 23CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Outline for todayOutline for today

 Minimum spanning tree
● Generic solution
● Kruskal's algorithm
● Prim's algorithm
● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm
● Special case if no cycles (DAG)
● Dijkstra's algorithm

12 Nov 2013CMPT231: minimum spanning tree 24CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Bellman-Ford algorithmBellman-Ford algorithm

 Allows negative-weight edges
● Returns FALSE if net-negative cycle is reachable

 Relax every edge, |V|-1 times:
 BellmanFord(V, E, w, s):

➔ InitSingleSource(V, E, s)
➔ for i = 1 to |V|-1:

● for each (u,v) ∊ E:
● Relax(u,v,w)

➔ for each (u,v) ∊ E:
● if v.d > u.d + w(u,v)

● return FALSE

 Convergence: shortest paths have ≤ |V|-1 edges
● Each iteration relaxes one edge along path

p = (v0=s, …, vk), so |V|-1 iterations is enough

Run time: Θ(VE)Run time: Θ(VE)

12 Nov 2013CMPT231: minimum spanning tree 25CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Single-source in a DAGSingle-source in a DAG

 Directed acyclic graph: no worries about cycles
 Pre-sort vertices by topological sort:

● For all paths, edges are relaxed in order
● Don't need to iterate |V|-1 times over edges

 ShortestPathDAG(V, E, w, s):
➔ TopologicalSort(V, E)
➔ InitSingleSource(V, E, s)
➔ for each u ∊ V in topo order:

● for each v ∊ Adj(u):
● Relax(u,v,w)

 Time: Θ(V+E)!

12 Nov 2013CMPT231: minimum spanning tree 26CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Outline for todayOutline for today

 Minimum spanning tree
● Generic solution
● Kruskal's algorithm
● Prim's algorithm
● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm
● Special case if no cycles (DAG)
● Dijkstra's algorithm

12 Nov 2013CMPT231: minimum spanning tree 27CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Dijkstra's algorithmDijkstra's algorithm

 No negative-weight edges allowed
 Weighted version of breadth-first search

 Use priority queue instead of FIFO
● Keys are the shortest-path estimates v.d
● Similar to Prim's algo but calculating v.d

 Dijkstra(V, E, w, s):
➔ InitSingleSource(V, E, s)
➔ Q = new PriorityQueue(V)
➔ while Q not empty:

● u = ExtractMin(Q)
● for each v ∊ Adj(u):

● Relax(u,v,w)

 Greedy choice: select u with lowest u.d

12 Nov 2013CMPT231: minimum spanning tree 28CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Dijkstra: correctnessDijkstra: correctness

 Loop invariant: at top of loop, u.d = δ(s,u) ∀ u ∉ Q
 Proof: suppose not: let u be the first vertex

removed from Q that has u.d ≠ δ(s,u)
● ∃ path s ↝ u (otherwise, u.d = ∞ = δ(s,u))
● Let p be a shortest path s ↝ u, and let (x,y) be

the first edge in p crossing from !Q to Q
 Then x.d = δ(s,d) (as u is first to have u.d ≠ δ(s,u))

● (x,y) was then relaxed, so y.d = δ(s,y) (convgc)
 y on shortest path, so δ(s,y) ≤ δ(s,u) ≤ u.d

● But both y,u ∊ Q when ExtractMin, so u.d ≤ y.d
● Hence y.d = u.d, so u.d = δ(s,u), contradiction

12 Nov 2013CMPT231: minimum spanning tree 29CMPT231: minimum spanning treeCMPT231: minimum spanning tree

Dijkstra: running timeDijkstra: running time

 Init for weights and Q takes Θ(V)
 ExtractMin is run exactly |V| times

 DecreaseKey (called by Relax) is run O(E) times

 Using binary max-heaps:
● All operations are O(lg V)
● ⇒ Total time O(E lg V)

 Using Fibonacci heaps:
● ExtractMin takes O(1) amortised time
● Other operations total O(V) ops

with amortised time O(lg V) each
● ⇒ Total time O(V lg V + E)

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

