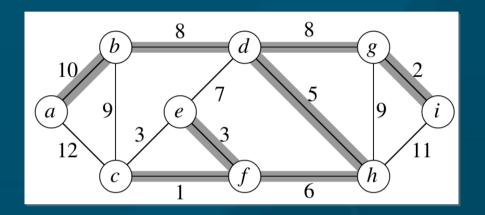
ch23: Minimum Spanning Tree ch24: Single-Source Shortest Path

12 Nov 2013 CMPT231 Dr. Sean Ho Trinity Western University

- Minimum spanning tree
 - Generic solution outline
 - Kruskal's algorithm (builds a forest)
 - Prim's algorithm (builds a tree)
 - Uniqueness of MST
- Single-source shortest paths
 - Properties / lemmas about shortest paths
 - Bellman-Ford algorithm (neg weight allowed)
 - Special case if no cycles (DAG)
 - Dijkstra's algorithm (no neg weight)

Minimum spanning tree

- Given a connected, undirected graph G=(V,E)
 - with weights w(u,v) on each edge (u,v) ∈ E
- Find tree T ⊆ E that
 - Connects all vertices
 - Minimising total weight $w(T) = \Sigma_T w(u,v)$



- Why must T be a tree? # edges in T? Unique?
- Applications: elec wiring in Moravia (Borůvka)
 - Utilities: gas/elec/water, Internet routing
 - Image analysis, registration, handwriting recog

Generic MST solution outline

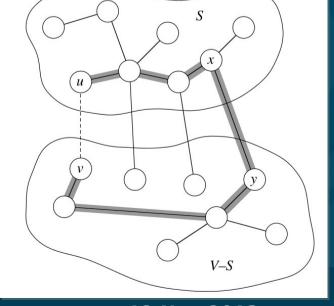
- Build up solution A one edge at a time:
 - ◆ Start with A = ∅
 - while A is not a spanning tree:
 - → find a safe edge (u,v) to add
 - → add it to A
 - Loop iterates exactly V-1 times
- What do we mean by a safe edge (u,v)?
 - if A is a subset of a MST, then
 A U (u,v) is still a subset of some MST
 - So adding (u,v) to A doesn't prevent us from finding a MST
- How do we find safe edges?

Safe edges across the cut

- Let A ⊆ E be a subset of some MST:
 - Let (S, V-S) be a cut: partitions the vertices
 - An edge (u,v) crosses the cut iff u ∈ S, v ∈ V-S
 - A cut respects A iff no edge in A crosses the cut
 - An edge is a light edge crossing the cut iff its weight is minimum over all edges crossing cut
- Theorem: Any light edge (u,v) crossing a cut (S, V-S) that respects A
 - \Rightarrow (u,v) is a safe edge for A

solid lines: **T** highlight: path **u** → **v**

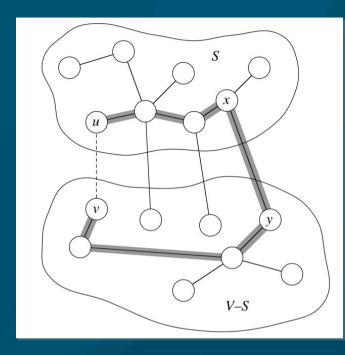
CMPT231: minimum spanning tree



Proof of safe edge theorem

- Proof by "cut-and-paste":
 - Let T be a MST such that $A \subseteq T$
 - If $(u,v) \notin T$, modify T so it is
- T is a tree \Rightarrow ∃ unique path $u \rightarrow v$
- Path must cross the cut (S,V-S): pick a crossing edge, call it (x,y)
 - Since cut respects A, (x,y) ∉ A

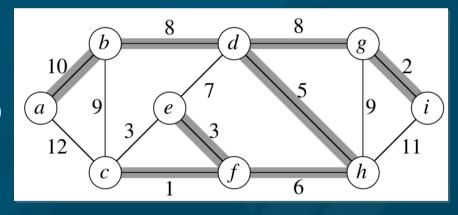
- Swap out edge: let $T' = T \{(x,y)\} \cup \{(u,v)\}$:
 - $w(T') \le w(T)$, so T' is also a MST
 - A \cup {(u,v)} \subseteq T', so (u,v) is safe for A



- Minimum spanning tree
 - Generic solution
 - Kruskal's algorithm
 - Prim's algorithm
 - Uniqueness of MST
- Single-source shortest paths
 - Properties / lemmas about shortest paths
 - Bellman-Ford algorithm
 - Special case if no cycles (DAG)
 - Dijkstra's algorithm

Kruskal's algorithm

- Each vertex starts as its own component
- Merge components by choosing light edges
 - Scan edge list in increasing order of weight
- Use disjoint-set ADT to find crossing edges
 - Kruskal(V, E, w):
 - \rightarrow A = \emptyset
 - → for each v ∈ V: MakeSet(v)
 - → sort E by weight w
 - → for each (u,v) ∈ E in order:
 - if FindSet(u) ≠ FindSet(v):
 - $A = A \cup \{(u,v)\}$
 - Union(u, v)
 - → return A



// crossing, so safe

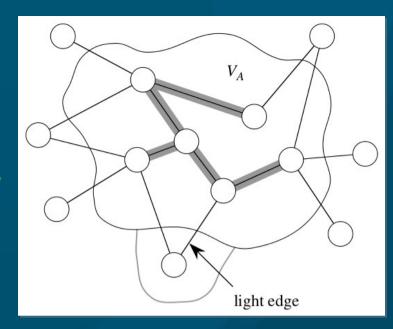
Kruskal: running time

- Init components: |V| * MakeSet
- Sort edge list by weight: |E| lg(|E|)
- Main for loop: |E| * FindSet, and |V| * Union
- Disjoint-set forest with union by rank and path compression (see ch21):
 - FindSet and Union are $O(\alpha(V))$
 - $\alpha()$ is the inverse of the Ackermann function; very slow growing, $\alpha(n) \leq 4$ for all reasonable n
 - \rightarrow O(V + E lg E + E α (V) + V α (V)) = O(E lg E)
 - note that $|V| 1 \le |E| \le |V|^2$
 - Even better if edges pre-sorted: O(E α(V)), essentially linear time in |E|

- Minimum spanning tree
 - Generic solution
 - Kruskal's algorithm
 - Prim's algorithm
 - Uniqueness of MST
- Single-source shortest paths
 - Properties / lemmas about shortest paths
 - Bellman-Ford algorithm
 - Special case if no cycles (DAG)
 - Dijkstra's algorithm

Prim's algorithm

- Start from arbitrary root r
- Build tree by adding light edges crossing $(V_A, V-V_A)$
 - V_A = vertices incident on A

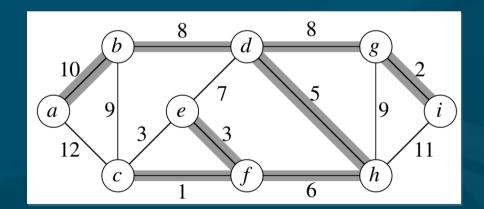


- Use priority queue Q to store vertices in V-V_A:
 - key (priority) of vertex v is min $\{w(u,v): u \in V_A\}$
- So ExtractMin() returns v such that (u,v) is a light edge crossing (V_A, V-V_A)
- At each iteration, A is always a tree, and
 - A = {(v, v.parent): v ∈ V {r} Q}
 - Final MST is encoded in the parent links

Prim: pseudocode

V	key	prt
a	∞	-
b	∞	-
C	∞	-
d	∞	-
e	∞	-
f	∞	-
g	∞	-
h	∞	-
i	∞	-

- Prim(V, E, w, r):
 - → Q = new PriorityQueue(V)
 - \rightarrow DecreaseKey(Q, r, 0) // set r.key = 0
 - while one mpty:
 - u = ExtractMin(Q)
 - for each v ∈ Adj(u):
 - if v ∈ Q and w(u,v) < v.key:
 - v.parent = u
 - DecreaseKey(Q, v, w(u,v))



Prim: running time

- Initialise queue: |V| * Insert
- 1 * DecreaseKey on root
- Main loop: |V| * ExtractMin + O(E) * DecreaseKey
- Using binary max-heaps to implement queue:
 - Insert, ExtractMin, DecreaseKey are all O(Ig V)
 - $\bullet \Rightarrow O(V | g | V + | g | V + V | g | V + E | g | V)$
 - = O(E |g \(\varphi \)
- Using Fibonacci heaps (ch19) instead, DecreaseKey can be done in O(1) amortised time
 - $\bullet \Rightarrow O(V \mid g \mid V + E)$

- Minimum spanning tree
 - Generic solution
 - Kruskal's algorithm
 - Prim's algorithm
 - Uniqueness of MST
- Single-source shortest paths
 - Properties / lemmas about shortest paths
 - Bellman-Ford algorithm
 - Special case if no cycles (DAG)
 - Dijkstra's algorithm

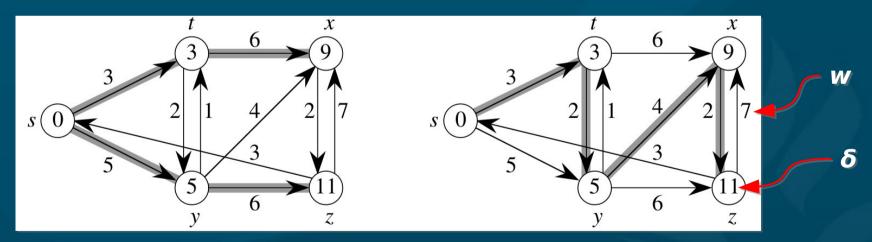
Uniqueness of MST

- In general, there may be multiple MSTs for a graph
- (p.630, 23.1-6): If every cut of the graph has a unique light edge crossing it, then MST is unique:
 - Let T, T' be two MSTs of the graph
 - Let $(u, v) \in T$. We want to show $(u, v) \in T'$
- T is a tree \Rightarrow T $\{(u,v)\}$ gives a cut: call it (S, V-S)
- (u,v) is a light edge crossing (S, V-S) (ex 23.1-3)
- T' must cross the cut, too: call its edge (x, y)
 - (x,y) is also a light edge crossing (S, V-S)
- By assumption, the light edge is unique
 - Hence (u,v) = (x,y), and so $(u,v) \in T'$

- Minimum spanning tree
 - Generic solution
 - Kruskal's algorithm
 - Prim's algorithm
 - Uniqueness of MST
- Single-source shortest paths
 - Properties / lemmas about shortest paths
 - Bellman-Ford algorithm
 - Special case if no cycles (DAG)
 - Dijkstra's algorithm

Shortest-path problems

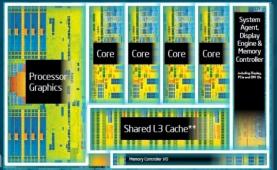
- Input: directed graph G=(V, E), edge weights w
- Task: Find shortest paths between vertices
 - For a path $p = (v_0, ..., v_k)$: $w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$
 - Shortest-path weight $\delta(u,v) = \min(w(p))$
 - (or ∞ if v is not reachable from u)



- Shortest-path not always unique
- Organised as tree rooted at source

Applications of shortest-path

- GPS/maps: turn-by-turn directions
 - All-pairs: optimise a fleet of trucks
 - Logistics / operations research
- Networking: optimal routing
- Robotics, self-driving: path planning
- Layout: factory/plant, VLSI chip design
- "Six degrees": path to a celebrity
- Solving puzzles a la Rubik's Cube:
 - $\bullet V = \text{states}, E = \text{transitions/moves}$



Shortest-path variants

- Single-source: fix source s ∈ V, and find shortest paths from s to every other vertex v ∈ V

- Single-destination: similarly for destination
- Single-pair: given u,v ∈ V, find shortest path
 - No better way known than using single-source
- All-pairs: simultaneously find shortest paths for all possible sources and destinations (ch25)
- Negative-weight edges: usually allowable
 - As long as there are no net-negative cycles!
 - Cycles with net weight ≥0 don't help, either

Generic outline of solutions

- Output: for each vertex v ∈ V,
 - v.d: shortest-path estimate
 - ♦ Initialised to ∞ (except s.d=0). Always $\ge \delta(s,v)$, and progressively reduced until v.d = $\delta(s,v)$ at solution
 - v.parent: links form shortest-path tree
- Edge relaxation: can we improve the shortest-path estimate for v by using the edge (u,v)?
 - Relax(u, v, w):
 - \rightarrow if v.d > u.d + w(u,v):
 - v.d = u.d + w(u,v)
 - v.parent = u
- All our single-source shortest-path algorithms start by initialising v.d, v.parent, then relaxing edges

Optimal substructure

- Any subpath of a shortest path is a shortest path:

• Let $p = p_{ux} + p_{xy} + p_{yy}$ be a shortest path $u \rightarrow v$:

•
$$\delta(u,v) = w(p) = w(p_{ux}) + w(p_{xy}) + w(p_{yy})$$

- Let p'_{xy} be a shorter path x→y: w(p'_{xy}) < w(p_{xy})
- Then we can build a shorter path p' for u→v:

•
$$w(p') = w(p_{ux}) + w(p'_{xy}) + w(p_{yv})$$

 $< w(p_{ux}) + w(p_{xy}) + w(p_{yv}) = w(p)$

 This contradicts the assumption that p was the shortest path for u→v

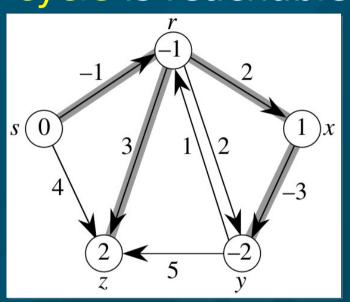
Properties / lemmas

- Triangle inequality: $\delta(s,v) \le \delta(s,u) + w(u,v)$
- Upper-bound property: $v.d \ge \delta(s,v)$ always, and once $v.d = \delta(s,v)$, it never increases again
 - Relaxing an edge can only lower v.d
- No-path property: if $\delta(s,v)=\infty$, then $v.d=\infty$ always
- Convergence property: if $s \sim u \rightarrow v$ is a shortest path with $u.d = \delta(s,u)$, then after Relax(u,v,w), we will have v.d = $\delta(s,v)$
 - By optimal substruct: $\delta(s,u) + w(u,v) = \delta(s,v)$
- Path relaxation property: if $p = (v_0 = s, ..., v_k)$ is a shortest path to v_k , then after relaxing its edges in order: $v_k d = \delta(s, v_k)$

- Minimum spanning tree
 - Generic solution
 - Kruskal's algorithm
 - Prim's algorithm
 - Uniqueness of MST
- Single-source shortest paths
 - Properties / lemmas about shortest paths
 - Bellman-Ford algorithm
 - Special case if no cycles (DAG)
 - Dijkstra's algorithm

Bellman-Ford algorithm

- Allows negative-weight edges
 - Returns FALSE if net-negative cycle is reachable
- Relax every edge, |V|-1 times:
 - BellmanFord(V, E, w, s):
 - → InitSingleSource(V, E, s)
 - \rightarrow for i = 1 to |V|-1:
 - for each (u,v) ∈ E:
 - Relax(u,v,w)
 - → for each $(u,v) \in E$:
 - if v.d > u.d + w(u,v)
 - return FALSE

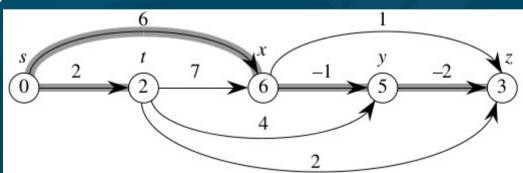


Run time: Θ(VE)

- Convergence: shortest paths have $\leq |V|-1$ edges
 - Each iteration relaxes one edge along path $|V| = (V_0 = s, ..., V_k)$, so |V| 1 iterations is enough

Single-source in a DAG

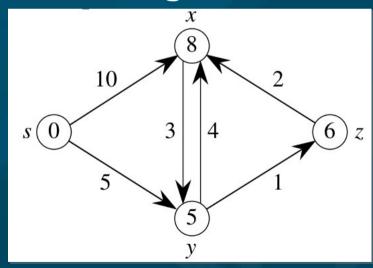
- Directed acyclic graph: no worries about cycles
- Pre-sort vertices by topological sort:
 - For all paths, edges are relaxed in order
 - Don't need to iterate |V|-1 times over edges
 - ShortestPathDAG(V, E, w, s):
 - → TopologicalSort(V, E)
 - → InitSingleSource(V, E, s)
 - → for each u ∈ V in topo order:
 - for each v ∈ Adj(u):
 - Relax(u,v,w)
- Time: Θ(V+E)!



- Minimum spanning tree
 - Generic solution
 - Kruskal's algorithm
 - Prim's algorithm
 - Uniqueness of MST
- Single-source shortest paths
 - Properties / lemmas about shortest paths
 - Bellman-Ford algorithm
 - Special case if no cycles (DAG)
 - Dijkstra's algorithm

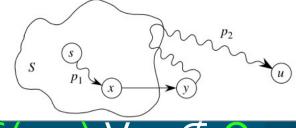
Dijkstra's algorithm

- No negative-weight edges allowed
- Weighted version of breadth-first search
- Use priority queue instead of FIFO
 - Keys are the shortest-path estimates v.d
 - Similar to Prim's algo but calculating v.d
 - Dijkstra(V, E, w, s):
 - → InitSingleSource(V, E, s)
 - → Q = new PriorityQueue(V)
 - → while Q not empty:
 - u = ExtractMin(Q)
 - for each v ∈ Adj(u):
 - Relax(u,v,w)



Greedy choice: select u with lowest u.d.

Dijkstra: correctness



- Loop invariant: at top of loop, u.d = $\delta(s,u) \forall u \notin Q$
- Proof: suppose not: let u be the first vertex removed from Q that has u.d $\neq \delta(s,u)$
 - \exists path $s \sim u$ (otherwise, u.d = $\infty = \delta(s,u)$)
 - Let p be a shortest path s ~ u, and let (x,y) be the first edge in p crossing from !Q to Q
 - ♦ Then x.d = $\delta(s,d)$ (as u is first to have u.d ≠ $\delta(s,u)$)
 - (x,y) was then relaxed, so $y.d = \delta(s,y)$ (convgc)
 - y on shortest path, so $\delta(s,y) \leq \delta(s,u) \leq u.d$
 - But both y,u ∈ Q when ExtractMin, so u.d ≤ y.d
 - Hence y.d = u.d, so u.d = $\delta(s,u)$, contradiction

Dijkstra: running time

- Init for weights and \mathbb{Q} takes $\Theta(V)$
- ExtractMin is run exactly | V | times
- DecreaseKey (called by Relax) is run O(E) times
- Using binary max-heaps:
 - All operations are O(|g V)
 - ⇒ Total time O(E | g V)
- Using Fibonacci heaps:
 - ExtractMin takes O(1) amortised time
 - Other operations total O(V) ops with amortised time O(Ig V) each
 - \Rightarrow Total time O(\lor \lor \lor \lor + E)

