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Outline for todayOutline for today

 Minimum spanning tree
● Generic solution outline
● Kruskal's algorithm (builds a forest)
● Prim's algorithm (builds a tree)
● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm (neg weight allowed)
● Special case if no cycles (DAG)
● Dijkstra's algorithm (no neg weight)
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Minimum spanning treeMinimum spanning tree

 Given a connected, undirected graph G=(V,E)
● with weights w(u,v) on each edge (u,v) ∊ E

 Find tree T ⊆ E that
● Connects all vertices
● Minimising total weight

w(T) = ΣT w(u,v)

 Why must T be a tree? # edges in T? Unique?

 Applications: elec wiring in Moravia (Borůvka)
● Utilities: gas/elec/water, Internet routing
● Image analysis, registration, handwriting recog
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Generic MST solution outlineGeneric MST solution outline

 Build up solution A one edge at a time:
 Start with A = ∅
 while A is not a spanning tree:

➔ find a safe edge (u,v) to add
➔ add it to A

● Loop iterates exactly |V|-1 times

 What do we mean by a safe edge (u,v)?
● if A is a subset of a MST, then

A ∪ (u,v) is still a subset of some MST
● So adding (u,v) to A doesn't prevent us from 

finding a MST

 How do we find safe edges?
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Safe edges across the cutSafe edges across the cut

 Let A ⊆ E be a subset of some MST:
● Let (S, V-S) be a cut: partitions the vertices
● An edge (u,v) crosses the cut iff u ∊ S, v ∊ V-S
● A cut respects A iff no edge in A crosses the cut
● An edge is a light edge crossing the cut iff its 

weight is minimum over all edges crossing cut

 Theorem: Any light edge (u,v)
crossing a cut (S, V-S)
that respects A
⇒ (u,v) is a safe edge for A

solid lines: T
highlight: path u → v
solid lines: T
highlight: path u → v
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Proof of safe edge theoremProof of safe edge theorem

 Proof by “cut-and-paste”:
● Let T be a MST such that A ⊆ T
● If (u,v) ∉ T, modify T so it is

 T is a tree ⇒ ∃ unique path u → v

 Path must cross the cut (S,V-S):
pick a crossing edge, call it (x,y)
● Since cut respects A, (x,y) ∉ A

 (u,v) is a light edge crossing cut ⇒ w(u,v) ≤ w(x,y)

 Swap out edge: let T' = T – {(x,y)} ∪ {(u,v)}:
● w(T') ≤ w(T), so T' is also a MST
● A ∪ {(u,v)} ⊆ T', so (u,v) is safe for A
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Outline for todayOutline for today

 Minimum spanning tree
● Generic solution
● Kruskal's algorithm
● Prim's algorithm
● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm
● Special case if no cycles (DAG)
● Dijkstra's algorithm
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Kruskal's algorithmKruskal's algorithm

 Each vertex starts as its own component
 Merge components by choosing light edges

● Scan edge list in increasing order of weight

 Use disjoint-set ADT to find crossing edges
 Kruskal(V, E, w):

➔ A = ∅
➔ for each v ∊ V: MakeSet(v)
➔ sort E by weight w
➔ for each (u,v) ∊ E in order:

● if FindSet(u) ≠ FindSet(v): // crossing, so safe
● A = A ∪ {(u,v)}
● Union(u, v)

➔ return A
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Kruskal: running timeKruskal: running time

 Init components: |V| * MakeSet
 Sort edge list by weight: |E| lg(|E|)

 Main for loop: |E| * FindSet, and |V| * Union

 Disjoint-set forest with union by rank and path 
compression (see ch21):
● FindSet and Union are O(α(V))

 α() is the inverse of the Ackermann function;
very slow growing, α(n) ≤ 4 for all reasonable n

● ⇒ O(V + E lg E + E α(V) + V α(V)) = O(E lg E)
 note that |V| - 1 ≤ |E| ≤ |V|2

● Even better if edges pre-sorted: O(E α(V)),
essentially linear time in |E|
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Outline for todayOutline for today

 Minimum spanning tree
● Generic solution
● Kruskal's algorithm
● Prim's algorithm
● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm
● Special case if no cycles (DAG)
● Dijkstra's algorithm
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Prim's algorithmPrim's algorithm

 Start from arbitrary root r
 Build tree by adding light edges

crossing (VA, V-VA)

● VA = vertices incident on A

 Use priority queue Q to store vertices in V-VA:

● key (priority) of vertex v is min{w(u,v): u ∊ VA}

 So ExtractMin() returns v such that
(u,v) is a light edge crossing (VA, V-VA)

 At each iteration, A is always a tree, and
 A = {(v, v.parent): v ∊ V – {r} – Q}
 Final MST is encoded in the parent links
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Prim: pseudocodePrim: pseudocode
 Prim(V, E, w, r):

➔ Q = new PriorityQueue(V)
➔ DecreaseKey(Q, r, 0) // set r.key = 0
➔ while Q not empty:

● u = ExtractMin(Q)
● for each v ∊ Adj(u):

● if v ∊ Q and w(u,v) < v.key:
● v.parent = u
● DecreaseKey(Q, v, w(u,v))

v key prt

a ∞ -

b ∞ -

c ∞ -

d ∞ -

e ∞ -

f ∞ -

g ∞ -

h ∞ -

i ∞ -

v key prt

a ∞ -

b ∞ -

c ∞ -

d ∞ -

e ∞ -

f ∞ -

g ∞ -

h ∞ -

i ∞ -
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Prim: running timePrim: running time

 Initialise queue: |V| * Insert
 1 * DecreaseKey on root

 Main loop: |V| * ExtractMin + O(E) * DecreaseKey

 Using binary max-heaps to implement queue:
● Insert, ExtractMin, DecreaseKey are all O(lg V)
● ⇒ O(V lg V + lg V + V lg V + E lg V)
● = O(E lg V)

 Using Fibonacci heaps (ch19) instead, 
DecreaseKey can be done in O(1) amortised time
● ⇒ O(V lg V + E)
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Outline for todayOutline for today

 Minimum spanning tree
● Generic solution
● Kruskal's algorithm
● Prim's algorithm
● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm
● Special case if no cycles (DAG)
● Dijkstra's algorithm
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Uniqueness of MSTUniqueness of MST

 In general, there may be multiple MSTs for a graph
 (p.630, 23.1-6): If every cut of the graph has a 

unique light edge crossing it, then MST is unique:
● Let T, T' be two MSTs of the graph
● Let (u,v) ∊ T. We want to show (u,v) ∊ T'

 T is a tree ⇒ T – {(u,v)} gives a cut: call it (S, V-S)

 (u,v) is a light edge crossing (S, V-S) (ex 23.1-3)

 T' must cross the cut, too: call its edge (x, y)
● (x,y) is also a light edge crossing (S, V-S)

 By assumption, the light edge is unique
● Hence (u,v) = (x,y), and so (u,v) ∊ T'
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Outline for todayOutline for today
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● Generic solution
● Kruskal's algorithm
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● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm
● Special case if no cycles (DAG)
● Dijkstra's algorithm
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Shortest-path problemsShortest-path problems

 Input: directed graph G=(V, E), edge weights w
 Task: Find shortest paths between vertices

● For a path p = (v0, …, vk): w(p) = Σ w(vi-1, vi)

● Shortest-path weight δ(u,v) = min(w(p))
 (or ∞ if v is not reachable from u)

 Shortest-path not always unique

 Organised as tree rooted at source

ww

δδ
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Applications of shortest-pathApplications of shortest-path

 GPS/maps: turn-by-turn directions
● All-pairs: optimise a fleet of trucks
● Logistics / operations research

 Networking: optimal routing

 Robotics, self-driving: path planning
 Layout: factory/plant, VLSI chip design

 “Six degrees”: path to a celebrity

 Solving puzzles a la Rubik's Cube:
● V = states, E = transitions/moves

Willow GarageWillow Garage

Intel HaswellIntel Haswell

http://www.willowgarage.com/blog/2009/09/04/robot-comics-path-planning
http://www.willowgarage.com/blog/2009/09/04/robot-comics-path-planning
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-processor-family.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-processor-family.html
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Shortest-path variantsShortest-path variants

 Single-source: fix source s ∊ V, and find shortest 
paths from s to every other vertex v ∊ V

 Single-destination: similarly for destination
 Single-pair: given u,v ∊ V, find shortest path

● No better way known than using single-source

 All-pairs: simultaneously find shortest paths for all 
possible sources and destinations (ch25)

 Negative-weight edges: usually allowable
● As long as there are no net-negative cycles!
● Cycles with net weight ≥0 don't help, either
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Generic outline of solutionsGeneric outline of solutions

 Output: for each vertex v ∊ V,
● v.d: shortest-path estimate

 Initialised to ∞ (except s.d=0). Always ≥ δ(s,v), and
progressively reduced until v.d = δ(s,v) at solution

● v.parent: links form shortest-path tree

 Edge relaxation: can we improve the shortest-path 
estimate for v by using the edge (u,v)?

 Relax(u, v, w):
➔ if v.d > u.d + w(u,v):

● v.d = u.d + w(u,v)
● v.parent = u

 All our single-source shortest-path algorithms start 
by initialising v.d, v.parent, then relaxing edges
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Optimal substructureOptimal substructure

 Any subpath of a shortest path is a shortest path:
● Cut-and-paste proof:

● Let p = pux + pxy + pyv be a shortest path u→v:

 δ(u,v) = w(p) = w(pux) + w(pxy) + w(pyv)

● Let p'xy be a shorter path x→y: w(p'xy) < w(pxy)

● Then we can build a shorter path p' for u→v:
 p' = pux + p'xy + pyv 

 w(p') = w(pux) + w(p'xy) + w(pyv)
< w(pux) + w(pxy) + w(pyv) = w(p)

● This contradicts the assumption that p was the 
shortest path for u→v
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Properties / lemmasProperties / lemmas

 Triangle inequality: δ(s,v) ≤ δ(s,u) + w(u,v)
 Upper-bound property: v.d ≥ δ(s,v) always,

and once v.d = δ(s,v), it never increases again
● Relaxing an edge can only lower v.d

 No-path property: if δ(s,v)=∞, then v.d=∞ always
 Convergence property:

if s ↝ u → v is a shortest path with u.d = δ(s,u), 
then after Relax(u,v,w), we will have v.d = δ(s,v)
● By optimal substruct: δ(s,u) + w(u,v) = δ(s,v)

 Path relaxation property:
if p = (v0=s, …, vk) is a shortest path to vk, then 
after relaxing its edges in order: vk.d = δ(s,vk)
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Outline for todayOutline for today

 Minimum spanning tree
● Generic solution
● Kruskal's algorithm
● Prim's algorithm
● Uniqueness of MST

 Single-source shortest paths
● Properties / lemmas about shortest paths
● Bellman-Ford algorithm
● Special case if no cycles (DAG)
● Dijkstra's algorithm
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Bellman-Ford algorithmBellman-Ford algorithm

 Allows negative-weight edges
● Returns FALSE if net-negative cycle is reachable

 Relax every edge, |V|-1 times:
 BellmanFord(V, E, w, s):

➔ InitSingleSource(V, E, s)
➔ for i = 1 to |V|-1:

● for each (u,v) ∊ E:
● Relax(u,v,w)

➔ for each (u,v) ∊ E:
● if v.d > u.d + w(u,v)

● return FALSE

 Convergence: shortest paths have ≤ |V|-1 edges
● Each iteration relaxes one edge along path

p = (v0=s, …, vk), so |V|-1 iterations is enough

Run time: Θ(VE)Run time: Θ(VE)
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Single-source in a DAGSingle-source in a DAG

 Directed acyclic graph: no worries about cycles
 Pre-sort vertices by topological sort:

● For all paths, edges are relaxed in order
● Don't need to iterate |V|-1 times over edges

 ShortestPathDAG(V, E, w, s):
➔ TopologicalSort(V, E)
➔ InitSingleSource(V, E, s)
➔ for each u ∊ V in topo order:

● for each v ∊ Adj(u):
● Relax(u,v,w)

 Time: Θ(V+E)!
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Outline for todayOutline for today
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Dijkstra's algorithmDijkstra's algorithm

 No negative-weight edges allowed
 Weighted version of breadth-first search

 Use priority queue instead of FIFO
● Keys are the shortest-path estimates v.d
● Similar to Prim's algo but calculating v.d

 Dijkstra(V, E, w, s):
➔ InitSingleSource(V, E, s)
➔ Q = new PriorityQueue(V)
➔ while Q not empty:

● u = ExtractMin(Q)
● for each v ∊ Adj(u):

● Relax(u,v,w)

 Greedy choice: select u with lowest u.d
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Dijkstra: correctnessDijkstra: correctness

 Loop invariant: at top of loop, u.d = δ(s,u) ∀ u ∉ Q
 Proof: suppose not: let u be the first vertex 

removed from Q that has u.d ≠ δ(s,u)
● ∃ path s ↝ u (otherwise, u.d = ∞ = δ(s,u))
● Let p be a shortest path s ↝ u, and let (x,y) be 

the first edge in p crossing from !Q to Q
 Then x.d = δ(s,d) (as u is first to have u.d ≠ δ(s,u))

● (x,y) was then relaxed, so y.d = δ(s,y) (convgc)
 y on shortest path, so δ(s,y) ≤ δ(s,u) ≤ u.d

● But both y,u ∊ Q when ExtractMin, so u.d ≤ y.d
● Hence y.d = u.d, so u.d = δ(s,u), contradiction
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Dijkstra: running timeDijkstra: running time

 Init for weights and Q takes Θ(V)
 ExtractMin is run exactly |V| times

 DecreaseKey (called by Relax) is run O(E) times

 Using binary max-heaps:
● All operations are O(lg V)
● ⇒ Total time O(E lg V)

 Using Fibonacci heaps:
● ExtractMin takes O(1) amortised time
● Other operations total O(V) ops

with amortised time O(lg V) each
● ⇒ Total time O(V lg V + E)
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